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A method of investigating functionals containing a small parameter is proposed. 
A first approximation functional for a physically and geometrically nonlinear 
theory of shells, and functionals of refined theories of shells are constructed by 
this method by means of a functional of three-dimensional elasticity theory. 

1. Variational-asymptotic met hod. Inacertainset M 
of elements u let there be defined a functional 1 (u, h) dependent on the small para- 
meter h, and let us seek stationary points 1 (u, h) in fif. Simplification of this 
problem can be attempted as follows. 

We construct a ~n~tional 1, be discarding all small terms, in the asymptotic 
sense, in 1 (U, h), and we let M, be the set of its stationary points. If the set 

M,, consists of one element, then it is natural to expect that this element is a first 
approximation to one of the stationary points. However, the set M, contains many 
elements in the problems to be considered later, even when the initial functional has 
a single stationary point in M , We take some element n0 f? M, and seek u in 
the form u = r+, + u’, where U’ is less than 14~ in the asymptotic sense. Let us 

keep just the principal terms in u’, in the asymptotic sense, and the principal cross 
terms between ug and u’ in the functional I (ua -i_ u’, JE) . We then obtain the 

~nctional I’ (ua, u’, h). If the stationary point of the functional 1’ is unique, 
then U’ is defined in terms of ~0 and h. In principle, however, arbitrariness can 
occur in the finding of u’: u’== u’ (u,, ui? h.), where ui runs through a certain set 

M1 l 
We later seek u in the form u = r,+, + u’ (u,,, ur, h) + u”~ where 

u” is less than u’ in the asymptotic sense, and we find .u” in terms of u. and ~1 
analogously to the preceding. As a rule, the arbitrariness vanishes starting with a 
certain step, and the whole solution is determined by a certain set of elements uo, 
u,, I. . . , J-l,. 

Let v denote the part of the expansion u = ug +_ u’ -I- u” i . . . in which 
new arbitrarinesses appear, and Iet N be the subset of M through which the elements 

u run when ua runs through M,, u1 runs through M1, . . - , and U’ is the 
first correction to u: u = u + U’ (v’ does not contain new arbitrariness and is deiin- 

ed in terms of u: u’ = u’ (v, h)). 
Let us consider the problem of seeking stationary points of the functional 1 (U, h) 

in ,N. In general, this problem is simpler than the initial problem since the set N 

is narrower than M._ If it is “reasonable” (for example, the stationary point is found 
uniquely) and 1 (u i- v’ (u, /&), h) differs slightly from 1 (U, h) in N, then 

it can be expected that the stationary points I (u, h) in N, are a fist approximation to 
thestationary points I (u, !r). If [ (u 4 v’ (u, h), h) differs 

by a finite quantity from I (u, h) in N s and taking account of n* yields 
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a small con~bu~on, then the stationa~ points of the functional f (u + 7” (IL, h), 17) 

yield the first approximation. Otherwise, the next approximation must be examined, 

The set N can be guessed in many problems, Then the set M is represented as 
the sum M - ,iP- .$- N’ (u = ZJ I- v’, v E N, U’ E_ N’), v is fixed, small terms 
in the functional 1 (v -t_ v’, h) are discarded, and the stationary point in U’ is 

sought. COI~~~~~ to 7~’ (u. h) and functionals of the first and subsequent approxima- 
tions are later constructed by the general scheme. 

Sometimes a ~fficulty is met in the estimates, which is associated with the fact 

that the order of the desired functions is not known in advance, and it is not clear with 
respect to the separate components as to whether they must be retained in the approx- 
imation under consideration. In these cases, first similar terms should be discarded, 

the orders of the desired functions should be found, and then the orders of the discarded 
terms should be determined. If the orders of the discarded terms turn out to be less 
than those taken Into account, then it can be considered that the approximation has 

been constructed correctly. Otherwise, they must be retained. 
All terms of order E (4) as compared to one must be kept in the functional in 

order to construct a refined theory taking account of corrections of order P (h). 
Let us clarify this assertion by the example of the problem of the minimum of a 

quadratic functional I (u, h) of the form 

z (U, h) = .E (u, 77, h) - L (u, h) 

E (u, v, h) I- E, (u, u) + E, (h) E, (u, v) + e, (h) E, (11, v) + . . . 

35 (% 4 = &J (u) + 8, (4 L, (4 i- Ez (4 L, ia) + * * .> 82 = fJ (Q 

in a linear space M. Here E (u, U, h) is a symmetric functional, bilinear in u, v 
L (u, h) is a linear functional, and E, (u, u) is a positive-definite functional. 

The first approximation u,, is a minimum point of the functional I,, = E, (u, U) 

- 15, (u). The element ug satisfies the Euler equations: for any element w frcm M 

2E, (u,, 4 -L(w)=0 (1.1) 
Let us represent u in the form IL = 11~ -t_ u’. Keeping the principal term contain- 

ing U’ and the principal cross term between ZL~ and II’ in I (u, h) , and using 

the equality 2E, (ug, u’) - I,, (UC) = 0, resulting from (1. I), we obtain the problem 

of the minimum of the functional 

1’ = E, (u’, IL’) + 2E1 (h) E, (u,,, u’) - .sl (h) L, (u’) 

to determine u’. After the substitution IL’ = E~ (h) z it is reduced to the problem 
of the minimum of the functional e,-” (h) I’ = E, (z, z) + 2E, (u,, z) - Ll (4, which 

is independent of the small parameter. Therefore, u’ N e, (h) and terms of the order 

of eI (h) must be retained in the functional to construct the solution to a,1 (h) acc- 

uracy. 
The variational-asymptotic method is used below on the problem of deriving a 

two-dimensional theory of shells from three-dimensional elasticity theory (of the 

papers devoted to this topic, we note [l-20]). The solution of the three-dimensional 

problem depends on a small parameter in an essentially different manner at the edge 
and in the interior of the shell. Hence, the energy functional is separated into the 

sum of two functionals, the edge and the interior function& and its own iteration proc- 
ess is created for each. Consequently, theshell energy is comprised of energy distributed 
along the middle surface, and energy concentrated at the edge. 
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Four approximation are constructed: the classical theory having the error r + h, 

+ A** (E is the deformation scale, fi., = h,‘RO, RO is the characteristic radius 
of curvature, h,, = h i E, E is the characteristic scale of the change in the state 
of stress), the refined theory in which terms of order h,, are conserved, the refined 
theory in which terms of order h, and h,, are conserved, and the approximation 
in which corrections on the order of h,, h,, , and h,,2 are kept. 

The classical theory is examined in the case of inhomogeneity, anisotropy, and 
physical nonlinearity, and the next appro~m~tio~ for homogeneous, isotropic, and 
pbysica~y linear shells, 

The energy distributed over the middle surface differs in the refined theory from 
the classical expression by the inclusion of cross terms between the tension and bending 
tensors. In the approximation taking account of corrections on the order of h**2, 

the transverse shear energy and two additional desired functions describing the shear 
are added. In this respect it recalls the I?&snerNaghdi theory, 

The edge energies can be neglected in the classical theory, Taking the edge 
energy into account is essential in the next approxima~o~. The edge energy is cal- 
culated here in an approximation permitting corrections of order h, and h*, to 
be taken into account. It is shown that the edge energy of a loaded edge depends on 
the self-equilibrated part of the load at higher approxima~o~, As a rule, the self- 
equilibrated part of the load is unknown in applied problems, hence the edge energy 
is not determined and application of theories describing corrections on the order of 
h *** is meaningless (theories taking account of transverse shear are referred to here). 

Clbsed shellr, as well shells with free and rigidly fixed edges for which the edge energy 
is found uniquely are the exception. 

The edge energy describes the influence of the boundary layer on the inner state 
of stress. It was studied first by Gol’denveizer [3]. The idea of an edge energy was 

expressed by Koiter and Heijden [X6,18]. From physical considerations they indicated 
the energy of the free edge of an isotropic shell. The true energy of the edge domain 
is less for a free edge than is the energy calculated by the two-dimensional theory of 
Sh&JS. Hence, the shell energy in ff6,ISj was represented as a difference between 
the energies distributed over the whole middle surface (including the edge domain) and 
some positive integral over the middle surface boundary. The functional constructed 
in this manner turns out to be non-convex and without a lower bound. In this connec- 
tion, it is possible to mention the problems which either have no solution or have an 
ambiguous solution (see Sect. 8). 

In the theory considered below, the energy is composed of the sum of the energies 
from the inner parts of the shell and the energy of an edge rod, The appropriate prob- 

lem is substantially the problem of connecting the inner part of the shell and an edge 
rod with identical elastic characteristics. This will permit elimination of the defect 
noted, 

The connection problem results in edge conditions containing derivatives of the 
same order as the differential equations. Such boundary value problems occurred even 
under other approaches to the construction of refined shell theories IS]. 

Known at the present time, as other applications of the variational-~ymptotic 
method, are the derivation of a geometrically nonlinear theory of anisotropic inhomo- 
geneous rods pi_], a refined linear theory of rods [22], a refined theory of low- 
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frequency shell vibrations, [23], a theory of high-frequency plate vibrations [24], and 
straight rods [25], the derivation of averaged equations describing the continuum with 

a periodic microstructure [ZS]. 

Different publications of the method are given in [El, 233 (7, The foundation of 
the method is not considered, however, for strictly convex functionals it is represented 

completely visibly. 

2. F o r m u 1 a t i o n o f t h e p I o b 1 e m. Let us consider a smooth sur- 
face a, in a three-dimensional space R (smoothness is understood to be the exist- 
ence of derivatives of the order which will be encountered later). Let V, be the 

three-dimensional domain marked out by the vectors t/s?&,, ---‘l&i,, where B, 
is a vector normal to $2, . The elastic body (shell) occupies the domain V, in the 
undeformed state, 

We introduce a curvilinear coordinate system Ear 5 in ‘vO by means of the 
formulas 

zi = rgi (E”) + &2,,’ (EG,“) (2.1) 

zecrz ;i areiCartesian coordinates in R, 3 = rgf (g@) is the equation of the sur- 
are components of the vector 

a cylind& o?height h: E” E fz,, 1 5 1 
30, the coordinates E”, 5 vary in 

< h / 2, the domain of variation of the E”, 
exactly as of the middle surface, is denoted by f&,. The coordinates g”, E are 

also denoted by gffi, the smallLatin superscripts a, b, c, . . . and i. j, k, . . . 
are ascribed to projections on the associated axis E” and the observer axis xi and 
run through the values I,z, 3, the associated superscript 3 is sometimes omitted 

(for instance E :== Es), the smallGreek superscripts run through the values I, 2 and 

correspond to projections on the axis y. The zero subscript denotes quantities in 

the undeformed state, 

The metric tensor components in the coordinate system (2.1) are given by the 

formulas 

gQ@ ‘= n,g - Z&Xc? + E;2c,:~~ g,, = 0, go33 = 1 (2.2) 

g;” ;= ?C-3 [(I - 21f&)2 ay -+ 2E (1 - 2H,9 b7 + &$‘] 
g;” == 0, gp :.1 1 

x :=I I - 2ff& f KoE2 = I/‘det II ga9 iI/ uo 

(aWfi = r&r,+, a, -I= det IJ aO,p 11, & s r& 

b oap :A nos6,a:~, clKlg = bkh,, -= - KI~o~:~ + WHO%& 

IHere aoar:, bo,, COGS are components of the first, second, and third quadratic forms 
of the surface, the comma in the subscripts denoted differentiation with respect to 

Eal w, and & are the mean and Gaussian curvatures of 03. Unless specified 

*) See also, Berdichevskii, V. L. e Variational-asymptotic method of construction of 

a shell theory. Tezisy Dokl. XI A~-Union Conf. on Plate and Shell Theory (Khar ‘kov, 
1977). MOSCOW, 19’77. 
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otherwise, juggling the surface subscripts is realized by using the metric u~~p. Sum- 
mation is over repeated sub- and superscripts. Following [S], we shall understand the 
best constants in the inequalities 

to be the characteristic radius of curvature R, of the surface Q,,. 
We select the coordinates El, E2 in the n~ghborhood of the b~nda~ r0 of 

the surface 8, so that the equation of To would have the form El = c = const 
and %I would decrease with distance from ra. 

Let us consider that dead surface forces Pi are given on s,, = To x [--h ! 2, 

h / 21 and a, (E = -+: h / 2) , Then the functions X’ (Ea, 5) governing the 
position of points of the body in the deformed state are stationary points of the func- 
tional [27] 

I = J UX d@ dg - 1 (P$’ (gav g) X) dW - J PiLEi (Eay g) C&S (2.3) 

(A) :A 1E=h/2 i- J”~+h,Z, d@ = ~~~~1~~2 

Here dw is the area element on St,, the elastic energy per &it volume U is a 
known function of the strain tensor components 

2E@ = Ti,aZts - go@, 28,s = Xi,,Zg$ 2&33 = Zi,T$Sk - 1 (2.4) 

and the comma before the subscript E denotes differentiation with respect to E. The 
strain amplitude e = maxV, (E,&~)‘/z is assumed small (8 < 1). 

It is required to replace the problem formulated by an approximate “two-dimens- 

ional” problem in which functions of just El, Ez enter, The usual two-dimens- 
ional problem can be considered the result of passing to the limit as h + 0 in which 
U and Pi depend on h in a known manner, The change of variable E = h 5, 
1 5 1 < I/, makes the domain of definition of the solution identical for different h. 

After the change in parameter, h will enter the functional explicitly in terms of 8~s 
and 83s. Let us start the exposition from this viewpoint, however, we shall later turn 
to a more “realistic” viewpoint according to which h is fixed and the expansion is 
carried out over certain dimensionless small (but not infinitesimal) parameters. 

The fact is that as h -f 0 the bending strains also tend to zero if the strained 
middle surface arrives at some limit position as h - 0 . Because of the physical non- 
linearity, the material can behave differently for E - 40-s or I - 10-3, and the 
formal passage to the limit h - 0 can lead out of the physica~y interesting domain. 

Rejection of the infinite smallness of the parameters generally requires refinement 
of the meaning of the symbols O, 0, -, 4. This question is not discussed later. Let 

us just note that the possibility of passing to the limit h ---t 0 is restored in the 
physically linear case and all the concepts of asymptotic analysis acquire the usual 

meaning. 

3, Ffrst approximation in the phyrfcal linear 
theory. D e f o r m e d m i d d 1 e s u r f a c e. Let us introduce the func- 
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where < * > is the integral with respect to c in the limits [ -1/‘2, 1/z J. The surface 
$2 given by the equations xi =: ri (E”) will be called the deformed middle surface. 

Deformation of the middle surface is described by the tensorsAap =: “/2 (a,(~ - soap), 

Bal: = baa - &ap. Let us consider the elongation amplitudie &A = maxg, 

fA,pA”:i)liz and the bending ampiitude PB = I/& maxn, (&p@fi)‘ig to be small 
compared to unity. 

Characteristic scales. We make a change in the desired functions 

xi W, 5) = iri (E”) + Zzni (5”) 5 -k hy” ($a, [) (3.1) 

where K?’ is the normal to &. According to the definition of ri, the functions 
yi ([a, r;) satisfy the constraints 

<Yi (F, Q> =: 0 (3.2) 

Formula (3.1) sets up a mutually one- to-one~orr~poRde~~e between all the functions 
xi (Ea. ZJ and the pairs ($ (ga), yi (E”, I;)) in which the yi are subject to the 

conditions (3.2). 

Let 
Yu z rGiyi (rai s r,ai), y tzs niyi 

A a tz max~.l gcq&Ir A ES maxv,{ y,gj 

Because of the Wagger ~equa~ty [28] f ya J \c A,, 1 y 16 A and if A, = 
A=O,thenalso y,=y+O. 

Let us examine a certain point on the surface S&. For sufficiently small num- 

bers II, I, at this point the following inequalities are valid 

(3.3) 

We call the best constants iI, & in the inequalities (3.3) the characteristic scales of 

variation of the strain along the axes $I? Ez. The scales Z1, Z2 depend on the 

points of the surface. 
The nature of the state of stress is essentially related to the relative magnitude of 

h, I, and 1s. Let us divide the shell into three parts V,, V2 and V, , where 

the ratio of h* to one scale is much less than one in V, , and is on the order of or 

greater than one to the other scale; h / E, (( 1 I% / & < 1 in Vz t and h i & 3 1, 

h / 1, >” 1 in Vs. The domains Y1, Vz L and V, are cylinders in the vari- 

ables ES, 5. Their intersection with $2, is denoted by G?,, Qz , and a,. The 
subscripts on domains VI and V, are selected in co~for~ty with the fact that it is 
possible to pass from the three-dimensional problem to approximately the one-dimen- 
sional problem in Y1 (to a rod), and to the two-dimensional problem in V, . The 

problem remains ~ree-dime~~oRal in V, . The domains VI, IF2 and 7, dep- 
end on Jz. 

Let us assume that the shell contains no domain F, but consists of the domains 

V, and V,, where the domain V, abuts the edge of the shell and is given by the 

equation c - b < El < C, b = b (Es, h), b + 0 as h -+O , whileh / I1m 1 
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and h I l2 < 1 in V1 . 
The values of 11 and 1, , and therefore, the relative arrangement of the dom- 

ains VI, VZ and V3 are determined by the external load, the kinematic boundary 
conditions, and the geometry of the surface 62,. The assumptions made implicitly 

introduce a number of constraints. For the assumption of no domain 
forces, whose 

h ** = (he)‘-%h,, and in those cases when the parameter h,, is not related to 

h* at all, it is only important that h,, -g 1. The parameters h, and h,,jare later con- 

sidered independent. Conformity with the terminology ordinarily used can be achieved 

if the equality h,, = (h*)l-‘, is considered the definition of the index of variability 
0 in the parameters h, and h,,. 

Classification of the approximations. Thepresenceof 
three small parameters e, h, , and h,, g enerates a large diversity of asymptotics. 

We diminish the number of possible cases by using the following reasoning. For metals 

E - 10-6-10-3 , and there is no sense to keeping terms on the order of e in com- 

parison with unity. For thin shells (h, & 10-2) the components on the order of h, 
should be discarded. For shells of medium thickness (hi - 10-l -+ 2.10-l) taking 
account of corrections on the order of h, may be of interest, Numerical computa- 

tions show that two-dimensional theories sometimes work satisfactorily down to h,, 
- 1/2, and it is expedient to construct a two-dimensional theory in which corrections 

on the order of h, and h,,s are taken into account. 
III this connection, the following approximate theories are later examined: 

The classical theory 

(1 + [h,, + h, + h,,2 + h,,h, + h,2 + E + . . . 1) 

The fundamental refined theory 

(1 + h,, + 14. +h,,’ + h*,h, + h,2 + a + . . . 1) 

The refined theory taking account of the geometric correction 

(1 + h,, + h;+ Lh,,2 + h,&, + h,2 + E + . . .I) 

The theory taking account of transverse shear 

(1 + h*, + h, + h,,’ + Ih,,h, + h,’ + e + - . . 1) 

The orders of the terms conserved and discarded in comparison with one are indicat- 

ed in the parentheses, while the terms are taken. in the square brackets. 
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In separate parts of the shell l can be considerably less than R,,, and we have 
h, N h*,” for 1 - (hK,,)‘iz. Hence, the theory taking account of the geometric 

correction can pretend to refine the classical theory only in those parts of a shell 
where I > (hR,)“z. 

Internal problem and boundary layer problem.Let 
us separate the functional I into the sum of two functionals: 

I1 =~ h ~ UX dwd5 - i’ Ppi (~a”, 5) do (3.4) 

ir, 6 (I 

12 = h 5 Ux dad5 - [ { Pixi @p”, 5) x) dw 
2 i2, 

Let S, denote a cylindrical surface separating the domains I’, and V,, and 

r* its intersection with Q,,; S, ~ r* > [-1,‘2, 1/2]. Let the functions zi (EC”. 
;) be assigned in some manner on S, 

2 (p, 5) =- x; : r; + hn$. -$- hy; (3.5) 

Then problems to seek the stationary points of the functionals 1, and I, in the 
set of functions xi (E”. 5) which satisfy the constraints (3.5) are defined. We call 
the first problem inner, and the second the boundary layer problem. 

Certain estimates. We denote the number independent of 11 and the 
state of stress by m . Let d be the diameter of Q. (the maximum distance between 
points of the curve r‘,), I’&, and I’;S; are objects of connectedness on Q2, and 

9. We shall later understand 1 to be the lesser of the numbers d and the quantity 
1 considered above. The following estimates hold 

Iuaa~jl<m, IG”la m, )r&Idm/d, Ir$)\(~~/l (3.6) 

h2Cafi SE l/zh2 (rati - cocLp) = h26,C;B,i~h + 

0 c&B* + +AFB + h*2E.,2) 

(3.7) 

Here Ca[3 = a~?$&$, symmetrization is denoted by the parentheses in the sub- 

scripts: f@P) = l/* (fap -i .&a). 
Let Aa. < 1, A < 1. Then it can be shown that 

I n n e r p r o b 1 e m. The condition of boundedness of the strain as 11 4 0 

imposes definite constraints on the external forces. The second term in the functional 

I, should be of the same order of smallness as the energy, i.e., pa% 1 52, 1 ( 1 n,,I 
is the area of B, ), or of higher order. Hence Pi : 0 (h) as 1) -+ 0. Let F 

tend to zero. Since the external surface forces pi are proportional to the strains, it 
is possible to write Pi = 0 (p~h). This estimate should contain a dimensionless 

small parameter and h should be replaced by 11 / 1 or 11 / 120. It is natural to 
expect that the characteristic of the state of stress 1~ / l figures in the estimate of 

the force, Thus, we take as fundamental assumption that 

Pi 0 (peh,,.) on 5&. 
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Let us proceed to an asymptotic analysis of the functional 1, in the case of a 
physically linear material 

Let us introduce the longitudinal and transverse elastic energies by means of the form- 
ulas 

Simple calculations yield 

Let us estimate the orders of ya and y. To do this, it should be assumed that 
the functions ri (E”) are fixed and the first approximation for yar y should be 

found. The first approximation is sought from the condition of stationarity of the fun- 
ctional 1s in which all small terms in the asymptotic sense are discarded. We pro- 
ceed as follows. We first take the following approximate expressions for the strain 

Eaa = A aI3 - hBagL 2~3 = Ya7L f hY%a, ~33 = Y,s (3.10) 

The functions ya and y enter only in UL. In the first approximation it is possible 

toset x=1, gy”= a:fi. Terms containing ya, y have the form 

The symbol (a --t 

hSULclod~ = hS Jdo (3.11) 
oa or 

J = '12 (@+ W(Y,S f0-G - ohB:C)2 + 

PGp (!!a,6 + h,a) (a-+ fJ)) 

fi) denotes the expression in the preceding parenthesis with the 
subscript a replaced by b. As yet the work of the external forces is discarded. The 
functional (3.11) “does not retain” the boundary conditions (3.5). Hence, the deter- 

mination of y, , y reduces to minimizing J under the constraints (ya> = (y> 

= 0. The minimum of J is zero and is achieved at the functions 

Ya = l/z ahA_!,, (5” - ‘112) - l/s uh2B$,,5 ( C2 - l/d) 

y = --oA:c + V,ohB: ( 5” - VIZ) 

(3.12) 

Therefore, y - &.a i- EB, ya - h,, (8~ f EB). Now let us verify whether use of 

approximate expressions for the strain and discarding the work of the external forces 

would be allowable. We write the complete expression for the strains in the form(two 
bars in the subscripts indicated covariant differentiation on 9, and the semicolon 
indicates covariant differentiation on Q,) 

sap = Asp - hBa& + h2Ccq3C2 + h (Y(a 11 p) - bapY) - 

WaWY, II i3& + h2Gt,& + l/ah2 (Y, a + ba L~“‘YL) (a + ?) + 

112h2@LY (Yp 11 a - &aY) (Yv 116 - bvBY) 

(3.13) 
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2&o 1= !!a. ; t hy, a + hbasLu@yh - hi~a~uh~Lyp, ; -I_ 

h f!/, SL I- ~‘.d’“!ltJ y, ; -+ hfGV (!/p ,, a - b,,,y) $2 j; : 

Qj -: y, 5 + ‘!2i{, i t 1/2u~\‘yk,, ;yv, j 

It is seen from (3.13) that all the discarded terms in the expressions for ES3 and &as 

yield small corrections to the terms entering into (3.10). The member N!,, 52 can 

be omitted in the expression for %p because of the estimate (3.7). The members 

containing Y yield small terms compared to the terms in the functional J for the 
energy. Among the terms containing Ya the hY(dlp) has the lowest order of small- 
ness. Let us examine the cross-terms they generate in the energy (the quadratic term 

~2Y~~~~~~ is small compared to the term Y& in J according to the definition of 
the characteristic scale (3.3)). 

h <&%” WC&p - &36) Yv /j 6 x > (3.14) 

Let us note that for small & we have according to (2.2) 

WJ 
gn II a;” + 2E@ + 0 (h,“), g;p SE (x)“? g;fi =_ (3.15) 

a? + a@+ + 0 (h,“), h’E;p = h;p - r/2Hoa;P 

Because of the constraint <Y& = 0 we have (AapYwib) = 0. The principal 

cross term between Y, and A, in (3.14) has the form h2 (~~‘~~~~~~~~~~~> 
and therefore, is small compared to the cross term between Ya,b and Y,a . The 

principal cross term between Ya and B,P in (3.14) h2 <,!&pYqla 1?> has the same 

order of smallne.ss as the cross term between y,,~ and y,a in J. Hence, for 

the correct calculation of Ya it should be conserved. 
The work of the forces Py (P s Pini) induces a contribution on the order of 

@%~* and isnegligiblefor the determination of Y in a first approximation. The 

work of the forces Paya (Pa E ~~~~~~~) is on the order of p$h~, t and there- 

fore, induces the same contribution as [tYrcYa,t. It should hence be taken into acc- 

ount. Conservation of the terms mentioned does not change the orders of Ya and Y 

and the formula for Y in (3.12). 
It follows from the estimates y - eb4 -j- eg, ya - (Ed + tin) II** and (3,13) 

that 'Up I< m (&A -f- &B), i&3 I< m (&A + sB)h.+.*, 1 E33 16 m (&A -f- 

Q3). Hence E < m (e-4 i- &B) and, according to (3. f3), the measures of small- 

ness of the strain EA + Fn and e are ~ymptotically equivalent. 

C 1 a s s i c a 1 t h e o r y. The transverse part of the elastic energy is zero in 

a first approximation and the total energy agrees with the longitudinal energy cal- 

culated by strains ecbs = A,, - hB,p 5. Retaining the principal terms in Aa, 

and hBap and the principal cross term, we obtain 

Q = h <U> = h {U,,) = F (A) t- VlzF (hB) + F (A, hB) 

F(A) = ph[o(Afy+ A,Aa”] 

F (hB) = ph [CT (IBM)* + h2BM@@] 

F (A, hB) = 1/eph36;b [G (A:&, + A,&) - 2A;Bas] 

The tensors AGp and Bap are kinematically independent: for given A,,> the 
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tensor &,p can have functional degrees of freedom. Additional degrees of freedom 
can be sought (for fixed A,,) from the conditions for the extremum of a functional 
with the energy density ‘/rs8’ (hB) + F (A, hB). The era term F (A, hB) 
hence plays the part of external effects for the additional degrees of freedom. However, 

in the majority of linear problems occurring in applications, assigning Aab by virtue 

of the support conditions on the edge defines the tensor B,, completely; by virtue 

of the inequality F (A, hB) < mh, (F (A) t- F (hB)) the cross energy is “subject” 
to the tension and bending energies and can be discarded. We consequently arrive at 
the formula CD = F (A) + V12F (hB) . 

Within the framework of the accuracy of the classical theory, the measures of 
middle surface strain can be overdefined because of the addition of small terms. For 

instance, the tensor B,, can be replaced by the tensor [6] 

PCGB = B,, - b,,&,~ (3.16) 
This corresponds to adding components on the order of h*cA to hB and changes only 

the cross energy which is discarded in classical theory of shells. We shall later under- 

stand the energy density in classical theory of shells to be the quantity 

CD = F (A) + VnF (hp) (3.17) 

The work of the external forces on the front surfaces reduces in a first approximation 
to the work by a? = ri (g”) + hni (E”) 5. In an edge functional 1, the energy 
is on the order of ~8s 1 To lb (I I’0 1 is the length of r,) and is small compared to 
the energy of the inner part of the shell which is on the order of u&2 $2, I. Work of 
the forces in the edge functional reduces in a first approximation to work in xi = ri 
(E”) + hni (P) 5 (th’ b IS ecomes clear after examination of the refined theories). 
Moreover, the integral over f& in the expression for the energy of the inner part of 
the shell can be replaced by an integral over s&, , this results in the addition of a 

small component on the order of p&2 I I’,, lb. Thus the functional of the shell energy 

is given in a first approximation by the formula 

I@(E)) = JuUo-L (3.18) 

L = S ({Pi,‘,+ 5 h [Pi] ni) do + h 1 ((Pi) ri + h <Pig) ni) ds 

(Pi) ’ Pi [~=I,2 + Pi 1+-1/2y [Pi] = ii ,p,* - Pi j+‘,2 

Here CD is the function (3.17) and c& is a length element on rO. 

4. Surface energy in refined theories. Tocalculatethe 
terms in the energy density which are of order pE2h*, p2h**, p.a2hi.,+it is neces- 
sary to find the y, which are of order Eh,, , as has been established. Determina- 

tion of Ya lis connected with retention in energy terms of order pc2hi* + Ten-m of such 
order enter into both the longitudinal and transverse energies. In order to simplify 
the calculations and not take account of terms in the longitudinal energy, we substitue in 

place of(3.i) 
z* = ri ( Ea”) + hq? (Ea) 5 + hzi (Ea, 5) (4.1) 
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The functions ri and ‘pi are considered independent desired functions. The 
presence of three independent functions of 
six constraints on the remainder ,zi 

$” in addition permits the imposition of 

(zi} =:I 0, <zQ = 0 (4.2) 

The functions ri and ‘pi have the following meaning: 
-1=7X (2’ (go, 5) c>. 

9 = <x4 (Ea, Q), I-$ I 
F ormula (4.1) sets up a mutual one-to-one correspondence 

between aJ.l functions z’ (ga, 5) and all triples (r’, rp”, zi} in which the zi are 
subject to the constraintes (4,2), It follows from the preceding analysis that 
&qi - Eh**, cp - 1 z nicp, - 1 - E. 

9~ = 
Later we consider ri, cpi fixed and 

such that 4pa - e/z*+., rp - f - F and we seek zi . 
Higher order derivatives of the functions desired must be estimated when construct- 

ing approximate theories possessing higher accuracy. Xn this connection, additional 
inequalities for the subsequent derivatives should be introduced in the definition of 
the characteristic scales. Within the framework of the substitution (4.1) this reduces 
to adding estimates of derivatives of the new degrees of freedom. We replace (3.3) by 
the inequalities 

The estimates 

follow from (4.3). These estimates show that the last two members in the formula for i t&p 
can be replaced by to the accuracy of terms of the order of (h, + 
he,)% ea. 

h2nt &, @I 5 
The terms h>az;i, e and h*‘n~,~i,~) 5 yield a contribution on the order of 

(+A + ~*~B)(~* -I- h,,) s 
to the longi~d~al energy because of the constraints 
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(4.2). Since there are cross terms between zi and ri* cp” on the order of h**& 
in the transverse energy, the cross terms in the longitudinal energy can be discarded. 
Therefore, in seeking the zi in a first approximation, their contribution to just the 
transverse energy must be taken into account. Simplifications because of discarding 
in the formula for 

and the substitution 

ar;;lso ptfble in tire transverse energy. The approximate expressions Reap = aoaR, 
go - a, can be used for the metric tensor components since the values of z” 

are sought in a first approximation. Taking account of the work of the external forces 
on z’, we obtain the following functional to determine zi 

h .i (JL@U, 2) + J-L b)) h (48 5) 

'JS 

J.L (~1 = + 5 (A + $4 k g + 9p - 1. + GA: - ahBip fg - { Pz} 
--rl2 

The firnctiional(4.5) “does not rnain~~ the kinematic boundary conditions on 8,, 
hence, the evaluation of za and z reduces to minimization of the sum JL + JI 

with respect to 2, and z at each point of the surface f&, , which are considered 
as arbitrary functions of P dependent on 5” as on the parameters and satisfying the 
constraints <za> = <zag> = <z> = (25) = 0. To find z, it is necessary to 
know z in a first approxi~tion~ The cross terms between z, and z in the fimct- 
ional JL are small compared to the cross terms between z and Aap, hB,a in 

JL. Hence, the first approximation for z is determined from the problem of the 
minimum J,. We obtain 

z = ‘,‘,ahB: (5” - ?‘12) - V&j 5 (5” - 3/20) + 

*/a (A + 2p)-‘(5/3 IPI 5 (5” - 3/2~) + {P} (C2 - 1/12)) 

(4.6) 

inf J, = -V12a {P} hB: + 5/1z (h + 2~) T2 + l/n [Pi q (4.7) 
Here q = ‘p - 1 + GA:. The quadratic terms in the external force components 
are omitted in (4.7) since, as is easily verified, their variation yields a contribution 
of order &hi* to the equation as compared with one (in linear theory these terms 
are not variated and play the part of additive constants in the energy functional). 

Let us assume that Q = 0 feh**) (this will be confirmed later). Then accord- 
ing to (4.6), in a first approximation 
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z ==: ?,ohB: (5;” - l/,z) 

Substituting this expression in J, (z~, z> and minimizing with respect to G.7 
we fiid 

.% II= --I/&V,a (C2 - V,s) $- “/&JhY$,aC; (I;” - s/so) - (4.8) 

5&ipaC (P - a&@) i- 1/2$-1(5/s &I i (5% - s/so> + 

PC4 (5” - l/,z)>> Tija = ‘C’a - V&MBj, rJ, 

inf J, = h-i@ 1 --t- l/12 IPa1 $X + Ii,, (P”} hrg,a + 

V1soo iPI @Pi lltar @,CCY - h (Q) = 5/,,ph@a?fP 

Quadratic terms in the external forces are discarded in (4.8). 
To construct the energy functional of the inner part of the shell there remains to 

evaluate the surface density of the longitudinal energy cf, ,, = h (U ], x>. Here 

the approximate expression %,fi = -4%~ - 

strain components 

hB$jp -j- &2CL!p can be used for the 

eGfi (let us note that C$ = Caa +- 0 (h, (h, + h,,) E)ja 
We introduce the. nonsymmetric tensor &:a = gyY&vB, where gry are determined by 

(3~ 15). The energy density can be given the form 

c’ /i X z p la (Eycz,!’ + &~pzBE~~] 

Re-expanding $a in the first Legendre polynomials, we obtain by using (3.15) 

e$ = (A; - “/&%:YBC;j + ‘/&?2Cpaf - 

h (P$ - 26$4?,) 5 + h2 (. . .) (5” - %d + * * * 

We omit the superscript in the eTF by using the metric aG,p . Then 

U ,/ 31 = l.r [a (@erct@ + ~~y~~~~~a~~~~* J (4.9) 

The antisymmetric part of axa6 yields a contribution on the order of h*sas to 

=&‘I/ 3~ and cannot be taken into account. Hence, to evaluate 0 11 it is necessary 

to substitute the tensor elfap) =I Ar,p - hRx,p 5 in place of %p in (4,9), where 

Axap = Aap - ‘/~~~~~~~~~~ -t_ 1i~&2Cagt Blat = Bk$) - 2&&& 

We obtain relationship for @ 11 which agrees with the classical in form: CD il = 
F (A,) -!- ‘llxF (hB,). The difference is in the expressions for the deformation and 

the bending measures. We find r~_. The derivatives of rp enter the functional line- 

arly; hence, by varying with respect to C@, we obtain a linear algebraic equation for 

Q 
6/e @ + 2p)fcp - 1 i- aA:) i- ‘/,2 IPI - 1/,2 {P”};a i- 

h-l b,pda,,, / a?,, = 0 

It is hence seen that, as had been assumed above, v = 1 - GA: in a first approx- 

imation. The error of this formula is 0 (a fh, + h,,)). As a measure of the bend- 

ing, we take the tensor 

It agrees with the tensor (3.16) if the transverse sheer (ca is not taken into acc%Xint. 
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The tensors Ama and .&a in terms of .&a, Paa with the expression for cp 
taken into account, have the form 
second quadratic form of f&-J. 

(&a. = boa6 _ ~,,uocLB is the deviator of the 

AI~R = A,, - 1/rsh2b;&,,~, B,ap = Pap; - h;:Ag,~ - oboa,& 
The expression for the energy still remains awkward. Especially “unacceptable” 

is the gradient @, which enters into the transverse shear energy in terms of (pee - 

qG - l/~~~z~~ . Since qCa are independent functions, it is natural to get rid of the 
gradient Bf: @by going over to new desired functions &_ Here it is also necessary 
to make the substituion 7-i --f Fi - ri - ‘/sooh2B&zi in order that the formula for 
PM does not change (this formula was used in [29] for the linear theory of plates). 

Let yap denote the tensor Aaa constructed with respect to 

(Cx &,a - 

fi: yip = ‘/2 

&$ = 1. 
amp), and iii the vector determined from the relationships fiitta = 0, 

Then 
I 

A,p = IQ - 1f~~~2~~~p~~~ - l~~~~~‘b~~p~ (4.10) 

B lC+ = PaP - $yp>~ - ~~~~~~, Pap =I: %F: up- boapL@a; a) - b~~~~~~~ 

After substituting (4.10) into @ 11 and discarding terms on the order of h’, compar- 
ed with the principal terms, the surface elastic energy density 
h (U 11 X) + h (U,x> 

cf, = h <urn> =.z 
is written in the form 

Here F (y) and */ra F (hp) is the tension and bending energies according to class- 
ical theory, F (y, hp) is the cross energy, and the last term in (4.11) is the shear 

energy. 
The work of the external forces is given by 

@ = ‘looh ([PI + ‘/ah {Pa}. ) $ - --*-_&..L?!! 

%oah’ HP} + V12h Pal;,) P: - 6/12 PaI h$a 
------c_- 

Formulas (4.11) and (4.12) determine the energy functional of the inner part of the 
shelJ. 

5, B o u n d a x y 1 a y e r p r o b 1 e m, The boundary layer problem is a 
problem about the deformation of a closed elastic rod on a part of whose side surface 
(S,) the positions zi = a: ( Ea, 5) are given for the particles, and surface forces 

on another part (sa) , while the side surfaces L = f l/s are load-free. We 
consider the position of the particles on 8, to be matched with the internal expans- 
ion. This means that xk = r: + hc& 5 3_ hz: (the asterisks denote values of the 

quantities on S,), and the first appro~mation for z$ is found from (4.6),(4.8). 
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Since u - p&s, the volume integral in f, is on the order of pe2 /1‘,[ h* 
(f3r li - h). Its influence is felt in the boundary conditions in terms On the order of 

h,, as compared with one. Hence, 1, must be found on the basis of the refined 

theory in a first approximation, and with corrections on the order of h,, compared to 
unity in the theory taking shear into account, Still another characteristic parameter 
occurs in the boundary layer problem, the surface curvature 
(or ‘ To): kin) = zO&$ I ds 

kc,, of the contour J’, 
(to is the tangent vector to C#,-ir, ==% x rt,, 

and .S is the arckngth on I'* which increases if the surface Q, remains on the left 

during traversal to r+, f , We further consider that kin) - .8-” and aOll = 

fz022=~,4012==Oon i‘,. 

Energy of the free edge. Firstlet P, =0 on so. To the 

accuracy of terms on the order of h, and h,, S the metric tensor components in 

the coefficients of the quadratic form u can be replaced by the Kronecker symbols, 

Let us extract the l~gi~~nal energy, the transverse energy, and the shear energy in 

u (the Greek subscripts in Sect. 5 run through the values 1,3, E is the Young’s 
modulus, and Y is the Poisson’s ratio ) 

u = u i/ + Ud + U,, U 11 55~ min,,B,e,sU = r/sE&ss2 (5. I) 

UL = mineag (U - U,,) = 2p (ez12 + tz23P) 
uJ_ ZEz u - u,i - UL = p I(& + W&2 +- 

(%3 -+- %,2)2 + 245 + Y,h (El1 + 833 + zYe&" 

It is convenient to introduce a new comoving coordinate system Tt S, 5’ in 

the boundary layer problem, which would be given by the formulas 

5r = T; (a) -t l&v; (S) q + hn; (S)C 

f.n the initial state, where zi = 7-0~ (S) is the equation of rrk in the initial State. 
The rod cuxs section is curvilinear in the q, 6’ coordinates (Fig. 1). 

The transition matrix from the coordinates (!$I - b) / h, 5 to the coordinates 

rlt 5’ differs f ram one by a quantity on the order of h,, hence the energy in the 
new coordinates has the form (5.1) with the accur- 

acy taken. The coordinates 5 and 5’ coincide for 

q=o. The prime on the 5’ is further omitted 

‘I 
since the coordinate 5 is not used in the boundary 

layer. 
Let us make a change in the required functions 

Fig. 1 

ai = ri (s) + hvi (s)q -#- hnf (s) 5 + I@ (q, 5, s) (5.2) 

The vectors J and ni are located in the deformed state relative to the image of 

r *t exactly as v@’ and noi relative to r*. Subsisting (5.2) into the 

expression for the strain tensor components yields 

811 = Ylll -k w;1?,Q 2E13 = Yll3 + YSll 
(5.3) 

-_L 

&33 = Y23is -i- vzY;3?4i,3 

%l=IYz(l-- hi& + h&+,, + hnlsy+l,l, + h$a+ll i- hf &II 
- _--- _____w_..--me 
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The bar before the subscripts 1 and 3 here denotes the derivative with respect to q 
and 5, and the comma before the s , the derivative with respect to s, 

i ya = V iJi, ?j3 = Ziyi, Zj3 = FSiyi* Ti Et d& / dS 

o* = niqs - b012t A$2 = ‘1% (T$ - 1), 3:s = ?Z+Tf ,g - noit:, s 

The quantities ho, and hB,*, differ by terms on the order of h*eA from the 
values of hBr, and hBza on I?*, Let us keep the terms underlined by the solid 
line in (5.3). Then the boundary layer problem dissociates into two independent prob- 
lems, the plane problem of the ~~rnurn of a functional (ti - B is the integral with 
respect to 9, 5 over the rod cross section) 

((U,)) = ((p [(?irl r + v&z - vhB~~)2 -I- (yaj3 + v-4: - v~~~~)~ -t (5*4) 

r/s(Y, 13 + ~3irYl + 1/2hf~~~1 + ~313 + 24 - 2vh%dJ2> 

in a set of functions y,, y3 satisfying the conditions 

y1 = 0, y, = -@A*: -i_ ~~~~~~~ (5% - V,,) 

for q = 0 , and the antiplane problem of the minimum of the functional 

PA = %EL <(YZlI - he’*02 + h3 4 hw,zrl)% (5.5) 

in a set of functions ye which vanish for 7 = 0. 
It is seen from(5.4) and (5.5) that yl, ~12 and ys will be on the order of E. 

r-fence, all the terms discarded in (5.3) are leas than the rest (the third member in the 
formula for ez2 differs slightly from h dA22 / 13tl and, therefore, is of the order 
Of h&A)* 

The integral over the cross-section ((*> can be replaced by an integral over 
the rectangle 0 < q < b, = b f h, 1 5 i < riz, This induces an error on the 
order of h, . 

Plane problem. Letuspassfmm yl, y, to the new desired functions 

211 23 

Yl = -+~4;q + M&5 + zl 

y, = -vA:iS + l/~vh~~ (F - Vx2j - 1fz~hB~2~e + z3 
(5.6) 

Then the functional of the plane problem takes the form 

(CL> = @ t~I112 + */a hi3 + 2311)3 + ~31321 + lfzX !%\I + z31319 

For q =I: 0 the functions q, 2s satisfy the conditions 
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Zl = 0, z3 = (--oA*,a + Y&)I. -I- l/z h (&*,a - a.;>) >( 

(5” - l/12) 
Since to the accuracy assumed 

-G = o/l>Il Is-0 = -Y&? + (Zlll) 19-O 

G = - (Y3ld Iq=o = -a - (z31u) jqzo 

and Y-oz_-_o , the boundary condition for za is homogeneous 

Z3 - -(s(zli,)C - V,ho (z.&, q = 0 

Hence, inf((U,> - 0 and is reached for z, = za t= 0 

A n t i p 1 a n e p r o b 1 e m. The minimal value of 
to b, (ho,)2. We denote the proportionality factor by D 

((UL)) is proportional 

Calculations yield 

Dz$ I-+% L m tanh(2s-l)nb/h c (2s - 1)s 1 s=1 
For h < b we can put approximately tanh (2s - 1 )n b / h = 1 and 

11 - 0,315h / b]. 
D ;z 211 

The edge energy is comprised of the longitudinal energy !(U I/)> and the shear 

energy ((U,>>, In a first approximation we have 

The next approximation for the energy of a 

f r e e e d g e. The taking account of corrections of the order h,+ is associated 

with keeping terms emphasized by primes and a dot in (5.3). If 

the terms stressed by the dot can be omitted. 

+k,,, - hEs then 

It is easy to verify that 

pE2h:, 

&If {U,)> - 

and does not yield a contribution to the edge energy. To evaluate inf ((U,,) 
it is necessary to substitute the values of yi and ys found in a first approximation 

in the members of the expressions for Ezl and &sa’ stressed by primes. The edge 
energy is easily found, however the answer is too awkward to set down here. 

Functional of the energy of a loaded edge. The 

longitudinal components of the stress tensor pap in the internal part of the shell are 

on the order of PE, while the transverse tensor paa is on the order of pe’h,, 
In this connection, the external forces on the edge are naturally subjected to the 

condition 

flowever, it turns out that the self-equilibrated part of the load yields a contribu- 

tion to the edge energy for such “large” external forces. In fact, <P,?y,) - p.?, 

i.e., is on the order of the shear energy ((u,>>. The work Pi’ri on y, will 

therefore enter into the functional of the antiplane problem. By solving the antiplane 
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problem, it can be seen that the self-equilibrated part of the load, equal to PiTi - 
(PiTi>- 5 (PiTic) / (c”)j p er arms work on ho,: and, hence, is essential for f 
the calculation of corrections of order h,, to the solution. Therefore, if only the 
total force and moment on the edge are known, then the maximum allowable accur- 

acy is given by classical shell theory and the construction of refined theories is gener- 
ally meaningless. The situation is changed if the external forces satisfy an additional 

constraint: (the part of Pi-6 odd in 5 ) = 0 (p&h&. The part of 
in 5 can be discarded in tie antiplane problem since it does not work on 

p$ even 
hw, and 

yields only quadratic components in the external forces. The quantity ( (the part of 

? iZi odd in 5 )!. ys) is of the order of pe2h, * and negligible compared to ((U,>>. Hence, 

the taking account of the external forces does not change the solution of the antiplane 
problem. Work of the external forces on y3 can be discarded since (P,niy,) 

- @~**. There remains the work on Yl: <piviYl)* It is of the order of, $ 
and will enter the functional of the plane problem.After the substitution of (5.6). it 
will become 

((cl 1Qi2 + l/2 (%I3 + z,i1)2 + ss1s2J + li7.h (2111 + zs13)2> - 

<pivi%> h=b * - (Pivi (-vAZq + vhBz*zqC)) Iq=b+ 

The extremals depend on Pivi. 
tain vb* (<Pi+ > At2 

Discarding the terms dependent on Pi+, we ob- 
- (P#lJh Bz2) for the minimum value of the functional 

of the plane problem. Consequently, the edge functional is given by the formula 

LI = h S ((Pi) ri + b (Pi) vi + h (Pit;) ni - 
ru 

vb ((Pi+ 42 - (,P&> hB,*,)) ds 

(Y is the function in (5.7)) 
Construction of the edge functional with corrections on the order of he* taken 

into account, and therefore, of a theory taking account of transverse shear is imposs- 

ible if the self-equilibrated part of the load is unknown. Corrections of such an order 

are caused, for instance, by the self-equilibrated part of the force pi+ in the 

antiplane problem. In this connection, a theory with shear taken into account is not 

universal and its application is justified only for special classes of problems (closed 
shells, shells with a free edge). 

The above exposition permits the expectation that the following analog of the 
Saint Venant principle in shell statics is valid: in order for a load which is self-equili- 
brated in each transverse fiber of the edge to cause an internal state of stress represent- 

ing o (p&h,,), it is necessary and sufficient that Pi,* = 0 (/H?), Pini = 
0 (p&h**) and (the part of P$ odd in 5) = o (pa). 

The necessity of the latter condition is verified by the exact solutionoftheproblem 
on the strain of a semi-infinite plate which is self-equilibrated by a load at the edge, 
which has been constructed in [30]. 
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6. Two-dimensional refined theories of physic- 

a 1 1 y 1 i n e a I s h e 11 s. Let us summarize the results. The function of a 
two-dimensional shell theory is given by the formula 

I=+do+J v!as---L, L=L-l--L (6.1) 
nz rx 

Varying (6. l), within the framework of the accuracy of theories taking shear into 
account, we obtain a system of equations 

tap. , (3 - q@o; + (P”> = ‘lzh PI (h$ + 2Hoqi) (6.2) 

qa; a + t”‘bap + {J’} + l/h [Pal; a = hffo IPI 

t@ = ~2.~4 + 11~ (b&B0 - bo!mau), p + ma8 ; B = 0 

nafj _ a (@ + ‘) nia3 _ a (@ -t 8) 

‘Yaf3 ’ +ap 

(6.3) 

(6.4) 

(6.5) 

The classical terms are written in the left sides of (6.2) and (6.3), and corrections of 
order h, in the right sides. The system (6.2)-( 6.5) is closed in the first two refin- 
ed theories. TWO more equations for the function (Fcl are added to (6.2)-(6.5) in 
theories taking shear into account 

(6.6) 

In the classical and the funadmental refined theories @ = F (y) + VIZ F 
(hp) (if the crossenergy is inessential), @ = 0. Hence 

nafi = 2ph (I_$@’ -/- yap), ma0 = llaph3 (op$tB + pB) (6.7) 

in the theory taking account of the geometric correction @ = F (y) + ‘/la F 
(b) + F (Y, hp), where F (y, hp) is given by (4.11). and small terms stressed by 

a dot should be discarded in the expression (4.12) for 6 . Therefore 

nab == nyB - V3ph3 [ph’abF’ + cr (brp,, + (6/50 - 1) H,,&) a;P + (6.8) 

haB a6 3/tiqdo 1 + ‘huh IPI a, 

maB =m~P_l 13ph3 Wa@ + 0 (3/dtY~pLy + (8/tno - 1) H,y;) u:~ + 
oyhby] - l/,,, ah” {P} a@ ?. 0 

Here ny, rnyP are tensors in (6.7). 
&r the theory taking account of shear @ and @ are given by (4.11) and (4.12). 

According to (6.5) 

nap = ny + 1/1a ah2 {P}, ,a?, ma8 = mt” _ l/~,,ahslP~~~ p a? 
where ny and my are the tensors (6.8). 

To write the boundary conditions we introduce the curvature of the contour r* 

by the relationships [lS] 
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dn; 
- = k(,p; - kc,&, ds 

Varying (6.1) results in the following boundary conditions for the first two refined the- 
ories 

F@VccV~ - ia ( Pivi> - @z)nzvz = hb & ( Pkrk> - k(,,T I/--- k(~~k~~~f~ - t 6*9) ---- 

The classical terms are written in the left sides of (6,9) and the corrections in the right 
sides. The underlined terms and the terms behind the vertical bars can be discarded 
within the framework of the accuracy of the fundamental refined theory. Let us note 
that serf-equi~bration of the system of equations is lost here, Terms written after the 
double vertical bars are negligibly small in ihe theory taking account of geometric 
corrections. 

The terms containing factors of the quantities b and kc,, have no analogs in 
classical theory. They are related to the fact that the boundary conditions are not 

posed at the points of external force application but at the site of a merger of the 
shell and boundary layer solutions. Additional moments and transverse forces hence 
OCCUL 

The accuracy with which the functional I, is calculated does not permit writing 
boundary conditions in the theory taking account of shear. The relationships obtained 
for this theory can be used for closed shells. 

7, P h y 8 f c a 11 y A o n 11 n c a r t h e o t y, We replace the required 
functions (3.1). The ya will be calculated exactly as in the physically linear theory 
if the stress-strain relations allow of linearization for strains of the order of eh& . 
Then for Ya. as before, we obtain ya de%+*. Omittmg further details,we formulate the result* 

Let u (E 5, Jt; eag; ec63; tl,,) be a smooth function of all its arguments except 

5 (piecewise smoothness in 5 is allowed), strictly convex in the strain tensor com- 

ponents and varying slightly in 5~ at ranges on the order of h (the corresponding 
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scale &J satisfies the condition &J > k). These conditions are even satisfied in 
the Limit as h = 0. Let us construct the longitudinal energy 

UII (P, 5; a& = min u (P, 5, 0; asp; aag; eaa) 
El& ess 

Let us calculate the function 

The energy functional is given by (3.18) in a first approximation, where 0 should 
be understood to be the function (7.1) and paa the tensor (3.16) 

8. On short-wave extrapolation. Constructionofatwo-dim- 
ensional theory of shells by asymptotic method consists of two logical steps: 1) the 
asymptotic analysis of the three-dimensional theory and the derivation of a two-dim- 
ensional theory of shells in the long wave region, and 2) extrapolation of the results 

to short waves. For brevity, the terminology used in dynamics is applied here and 
the slowly varying state of stress (h / I < 1) is called long- wave while the rapidly 
varying state of stress is short-wave. 

The distinct asymptotic approaches in the first stage (analysis of the equations or 

energies) should result in identical results. In particular, the fundamental refined 
theory constructed above should agree with the refined theory proposed by Gol’denveizer 

[S]. Indeed, as Koiter and Heijden [16] showed, the Gol’denveizer theory allows an 
energy formulation with energies E of the form 

(8.1) 

According to the fundamental refined theory, the energy has the form 

E= 
s 

@do+ 
r yddy 

t8.2) 

%I r'* 

It is seen from the formula (5.7) for Y that (8.1) and (8.2) agree within the frame- 

work of the accuracy under consideration. 
The second step (extrapolation to short- waves is related to the desire to pose 

mathematically correct problems and, moreover, to apply the theory for “not very 

long” and “short” waves. Let us examine the correctness question. 
The nature of boundary value problems which are correct for this system of equat- 

ions is closely related to the type of system. The type of system is determined by its 

behavior at short waves. Hence, it is impossible to speak about the correctness and 

type of system of equations which would be deduced inits meaning in the long-wave 

region without prelimirrary extrapolation to short-waves. 
We will call the extrapolation trivial if it consists simply of examining the con- 

structed system of equations in which all the small terms, in the approximation under 

consideration, are discarded for both the long-wave and the short-wave states of stress. 
We will understand the extrapolation associated with the addition of a number of terms 
in the equations, which are negligible in the long-wave, but essential in the short- 

wave regions, as nontriviaL 
It is clear that different nontrivial extrapolations are possible for the same system 
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of equations. This should not cause any ~rpiexi~ since the short-waves~t~ ofstress 
do not allow of two-~me~onal description and must be considered only in qna~tative 
corr~ponde~ce and, perhaps, a sa~factory description of the integral ~baracte~sti~. 
The success of any no~~ivial ex~a~~a~o~ from the viewpoint of the correctness of 
describing the state of stress is clarified in the solution of test problems. 

Ln connection with the exposition, let us note that the question that is repeatedly 
evoked in the literature about whether the refined equation of shell dynamics should 
be enamor of hy~~bo~c type is ~en~a~y ‘a question about how to reaLize extra- 
polation of the equations derived for long-waves to short-waves. Both hyperbolic and 
~~-hy~rbo~c ex~a~lation are a~owable, however, as num~ous ~orn~ta~o~s [31] 
show, hyp~bo~c ~~a~la~o~ describe the state of stress best on the whole. 

The question of ex~a~la~on as an independent question did not occur in the deriva- 
tion of the classical theory of shells since the natural boundary value problems were 
correct after trivial ~~apo~at~o~* 

Trivial extrapolation of the refined theory of Gol‘denveizer generates ambiguity of 
the solution, and even no solution for certain loads. 

Let us explain this by the fo~o~~g example. Let us co~ider be~d~g of a plate 
occupy~g the ba~-p~a~~ zl q 0. The edge q = 3 is bad-free. The classical 
boundary conditions have the form 

m.%l ,a -j- ??P,s = 0, tn1r = 0 (3.3) 

where me@ is the bending moments tensor. ed boundary cou~~ons [S, 161 
contain a correction in the second guard in (8.3) (B is a cogent) 

r&x -+- ~~~ls,~ = 0 (3.4) 

It is assumed in (8.4) that the motion along the 9 8 axis keeps the plate on the left, 
The refined bou~da~ conditions can be used by two methods: 1) to solve the 

problem with the boundary conditions (8.3), evaluate ml2 , and find the correction 
to the so~~on, the plate be~d~g by the external moment (~~~l~),s; 2) to solve the 
problem after a “trivial ex~apo~t~on’~, i, e., directly with the refined boundary con- 
&tiOrrS. 

Let us examine the second method. For ~rnp~~~ty we put h = 0, 2~ = 1 so 
&at m*l = tl,ll, ml8 = u,~*, and m22 a 

u,2!z* Let then: be no external forces, The 
deflection u is the solution of the biharmo~~c equation As u = 0. We take a bi- 
harmonic ~nc~on of the form u = (el -t as+) e*%* sin k+ Su~ti~~on in the refined 
b~nda~ condoms yields 

ka, - a, = 0 (1 - Bhk) ka, Jr (2 - auk) a2 = 0 f&5) 

The deter~n~t of the system of Linear enamor (8.5) vanishes for k = 3 f huh). 
Heslce, there are nonzero solution for zero external forces. Naturally these solutions 
possess high va~ab~~~ (I N h) and emerge beyond the framework of those states of 
stress for which tbe two-d~rn~~onal theory was constructed. 

If external effects P sin f3zs ‘I (~~)) and &f sin (3x2 ! (2Bh)) are added to tfie 
right sides in (8.3) and (8.Q then the constants p and M can always be chosen 
such that the solution would not exist. 

The qn~~o~ af whether the c~u~t~~e noted can affect the stabile of a 
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numerical compu~tion requires additional ~ves~gation, (In principle, the formula- 
tion of a problem with the boundary conditions (8.3) and (8.4) and additional rejection 
of solutions with high variability is apparently possible). 

The linearized variant of the fundam~tal refined theory elucidated above can be 
considered as one of the possible methods of nontrivial extrapolation of the refined 
theory of Gol’denveizer to short waves. The uniqueness of the solution of problems in 
the linearized ~ndam~tal refined theory follows from the strict convexity of the 
energy, and the existence of the solution can be proved by standard calculus of 
variations methods. 

The author is grateful to Le Khan’ Xhau for verifying aU the formulas and hence 
correcting a number of errors. 
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