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A method of investigating functionals containing a small parameter is proposed.
A first approximation functional for a physically and geometrically nonlinear
theory of shells, and functionals of refined theories of shells are constructed by
this method by means of a functional of three-dimensional elasticity theory.

1, Variational-asymptotic method. Inacertainset M
of elements u let there be defined a functional [/ (u, &) dependent on the small para-
meter h, and let us seek stationary points [ (u, k) in M. Simplification of this
problem can be attempted as follows,

We construct a functional J, be discarding all small terms, in the asymptotic
sense, in I (u,h), and we let M, be the set of its stationary points, If the set
M, consists of one element, then it is natural to expect that this element is a first
approximation to one of the stationary points, However, the set M, contains many
elements in the problems to be considered later, even when the initial functional has
a single stationary point in M , We take some element %, < M, and seek % in
the form % = u, -+ u', where ' isless than u, in the asymptotic sense, Let us
keep just the principal terms in  u’, in the asymptotic sense, and the principal cross
terms between u, and u’ in the functional 7 {u, + u’, k). We then obtain the
functional 7’ (u,, u', k). If the stationary point of the functional /' is unique,
then u’ is defined in terms of uo and %. In principle, however, arbitrarinesscan
ocecur in the finding of uw': w'= u (uq, uq, k), where y, mns through a certain set
M. We later seek u in the form y = u, -+ u' (u,, u,, k) + u”, where
u” is less than 3’ in the asymptotic sense, and we find .u” in terms of u, and u,
analogously to the preceding, As a rule, the arbitrariness vanishes starting with a

certain step, and the whole solution is determined by a certain set of elements u,
Uyy.o + oy Uge

Let v denote the part of the expansion u = u, -+ u' -+ u” + ... inwhich
new arbitrarinesses appear, and let NV be the subset of M through which the elements
v mn when u, runsthrough My, ¥, runs through My, ..., and V' is the

first comrection to v: u = v -+ v’ (v does not contain new arbitrariness and is defin-
edintermsof v: v = v’ (v, h)).

Let us consider the problem of seeking stationary points of the functional I (u, k)
in N. In general, this problem is simpler than the initial problem since the set N
is narrower than M. If it is "reasonable" (for example, the stationary point is found
uniquely) and I (u -+ v (u, k), k) differs slightly from I (@, h) in N, then
it can be expected that the stationary points I (u, k) in N, area first approximation to
the stationary points [ (u, h). I I(u+v (u h), R differs
by a finite quantity from I(u, k) in N , andtakingaccountof p” yields
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a small contribution, then the stationary points of the functional / (¥ -+ v/ (u, h), k)
yield the first approximation, Otherwise, the next approximation must be examined,

The set V can be guessed in many problems, Then the set M is represented as
thesum M =N 4+ N' (u = v -~ V,ve N, v & N7, vis fixed, small terms
in the functional [ (v -+ v’, h) are discarded, and the stationary point in v’ is
sought, Corrections to v’ (v, 2) and functionals of the first and subsequent approxima -
tions are later constructed by the general scheme,

Sometimes a difficulty is met in the estimates, which is associated with the fact
that the order of the desired functions is not known in advance, and it is not clear with
respect to the separate components as to whether they must be retained in the approx-
imation under consideration, In these cases, first similar termns should be discarded,
the orders of the desired functions should be found, and then the orders of the discarded
terms should be determined. If the orders of the discarded . terms turn out to be less
than those taken into account, then it can be considered that the approximationhas
been constructed comrectly, Otherwise, they must be retained,

All terms of order ¢ () as compared to one must be kept in the functional in
order to corstruct a refined theory taking account of corrections of order ¢ {(h).

Let us clarify this assertion by the example of the problem of the minimum of a
quadratic functional I (u, k) of the form

I (u, h) = E (u, u, hy — L (u, h)
E (s, 0, B) = Eq (1, 0) + £ (B) By (4, 0) + & (b) Ey (4 0) + ...
Lu, by = Lo{wy + e () Ly () + e (B Ly(uw) + .. ., 8 = 0{g)

in a linear space M, Here E (u, v, &} is a symmetric functional, bilinearin u, v
L (u, k) is a linear functional, and £, (u, u) is a positive~definite functional,

The first approximation wu, is a minimum point of the functional I, = £, (u, u)
—~ Lo (u). The element u, satisfies the Euler equations: for any element w from M

2By (wg, w) — L (w) =0 (L)

Let us represent u in the form u = u, -+ «'. Keeping the principal term contain-
ing u'and the principal cross term between x, and u’ in 7/ (s, A}, and using
the equality 2E, (u,y, v’y — L, (u') = 0, resulting from (1, 1), we obtain the problem
of the minimum of the functional

I’ == Ey(u, u') i 285 (B) Ey (ug, w') — & (B) Ly ()
to determine u', After the substitution u’ = g, (k) z it is reduced to the problem
of the minimum of the functional &,~2 (h) I’ == E, (3, 2) -+ 2E; (uy, z) — 1.y {2), which
is independent of the small parameter, Therefore, u’ ~ &, (k) and terms of the order
of &; (k) must be retained in the functional to construct the solution to g; (k) acc-
uracy.

The variational-asymptotic method is used below on the problem of deriving a
two-dimensional theory of shells from three~dimensional elasticity theory (of the
papers devoted to this topic, we note [1-20]), The solution of the three~dimensional
problem depends on a small parameter in an essentially different manner at the edge
and in the interior of the shell, Hence, the energy functional is separated into the
sum of two functionals, the edge and the interior functionals and its own iteration proc-
ess is created for each, Consequently, theshell energy is comprised of energy distributed:
along the middle surface, and energy concentrated at the edge.
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Four approximations are constructed: the classical theory having the error € -+ A,
“+ hyy (e is the deformation scale, h, = h/R,, R, isthe characteristic radius
of curvature, h,, = h/ 1, 1 isthe characteristic scale of the change in the state
of stress), the refined theory in which terms of order 32* 5 are conserved, the refined
theory in which terms of order A, and h,, are conserved, and the approximation
in which corrections on the order of %, hy,, and h,> are kept.

The classical theory is examined in the case of inhomogeneity, anisotropy, and
physical nonlinearity, and the next approximations for homogeneous, isotropic, and
physically linear shells,

The energy distributed over the middle surface differs in the refined theory from
the classical expression by the inclusion of cross terms between the tension and bending
tensors, In the approximation taking account of corrections on the order of Ay, 2,
the transverse shear energy and two additional desired functions describing the shear
are added, In this respect it recallsthe Reissner—Naghdi theory,

The edge energies can be neglected in the classical theory, Taking the edge
energy into account is essential in the next approximations, The edge energy is cal-
culated here in an approximation permitting corections of order h, and A, to
be taken into account, It is shown that the edge energy of a loaded edge depends on
the self-equilibrated part of the load at higher approximations. As a rule, the self-
equilibrated part of the load is unknown in applied problems, hence the edge energy
is not determined and application of theories describing corrections on the order of

hy4? is meaningless (theories taking account of transverse shear are referred to here),
Closed shells, as well shells with free and rigidly fixed edges for which the edge energy
is found uniquely are the exception,

The edge energy describes the influence of the boundary layer on the inner state
of stress, It was studied first by Gol'denveizer [3]. The idea of an edge energy was
expressed by Koiter and Heijden [16,18]. From physical considerations they indicated
the energy of the free edge of an isotropic shell, The tue energy of the edge domain
is less for a free edge than is the energy calculated by the two-dimensional theory of
shells, Hence, the shell energy in {16, 18] was represented as a difference between
the energies distributed over the whole middle surface (including the edge domain)and
some positive integral over the middle surface boundary, The functional constructed
in this manner tums out to be non-convex and without a lower bound, In this connec-
tion, it is possible to mention the problems which either have no solution or have an
ambiguous solution (see Sect. 8),

In the theory considered below, the energy is composed of the sum of the energies
from the inner parts of the shell and the energy of an edge rod, The appropriate prob-
lem is substantially the problem of connecting the inner part of the shell and an edge
rod with identical elastic characteristics, This will permit elimination of the defect
noted,

The connection problem results in edge conditions containing derivatives of the
same order as the differential equations, Such boundary value problems occurred even
under other approaches to the construction of refined shell theories [5],

Known at the present time, as other applications of the variational-asymptotic
method, are the derivation of a geometrically nonlinear theory of anisotropic inhomo-
geneous rods [21], a refined linear theory of rods [22], a  refined theory of low-
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frequency shell vibrations, [23], a theory of high-frequency plate vibrations [24], and
straight rods [25], the derivation of averaged equations describing the continuum with
a periodic microstructure [26],

Different publications of the method are given in [21, 23] (*). The foundation of
the method is not considered, however, for strictly convex functionals it is represented
completely visibly,

2, Formulation of the problem, Letusconsider a smooth sur-
face Q, in a three-dimensional space R (smoothness is understood to be the exist-
ence of derivatives of the order which will be encountered later), Let ¥, be the
three-dimensional domain marked out by the vectors /,h#y, —,/ifk,, where T,
is a vector normal to Q. The elastic body (shell) occupies the domain V, in the
undeformed state,

We introduce a curvilinear coordinate system &%, & in V, by means of the
formulas

zi = ryi (89 4 Eny (£ 2.1

Here ! are Cartesian coordinates in R, 2= rt (E*) is the equation of the sur-
face g, n,' are components of the vector o, the coordinates £%, & wvary in
a cylinder of height A: & & Q,, | £ | < A/ 2, the domain of variation of the &%,
exactly as of the middle surface, is denoted by €,. The coordinates t®, E are
also denoted by  E*, the smallLatinsupesscripts @, b, ¢, . . .and i,7], k, .
are ascribed to projections on the associated axis &% and the observer axis z* and
run through the values 7, 2,3, the associated superscript & is sometimes omitted
(for instance & == EP?), the small Greek superscripts run through the values 7, 2 and
correspond to projections on the axis £%. The zero subscript denotes quantities in
the undeformed state,
The metric tensor components in the coordinate system (2. 1) are given by the

formulas

Boap = Goa3 — 28boos + ECoas,  goas = 0y goss = 1 (2.2)

5% = w2 (1 — 2HE)?aY” 4- 28 (1 — 2H oE) 6P - E2)°)

g?a =t 0, ggs =z 1 )

%= 4 — 2HoE + KB = V det | gas || / a0

(@ = Toaoiss @o == det || aag ], 700 =T0,a

boass = RoiTe,01r Coas = Dpabors = — Kottoos -+ 2H oboss)
Here ous. boap, Cows are components of the first, second, and third quadratic forms

of the surface, the comma in the subscripts denoted differentiation with respect to
E* H, and K, are the mean and Gaussian curvatures of ,. Unless specified

*) See also, Berdichevékii, V. L.; Variational-asymptotic method of construction of
ashell theory, Tezisy Dokl, XI All-Union Conf, on Plate and Shell Theory (Khar ‘kov,
1977), Moscow, 1977,
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otherwise, juggling the surface subscripts is realized by using the metric @ygp. Sum-
mation is over repeated sub~ and superscripts, Following [8], we shall understand the
best constants in the inequalities

\booél\"i%ov lbog.v!<\7;%
to be the characteristic radius of curvature H, of the surface Q,.

We select the coordinates &', E2 in the neighborhood of the boundary T, of
the surface €, so that the equation of T', would have the form E!' = ¢ = const
and &' would decrease with distance from I',.

Let us consider that dead surface forces P; are givenon S, =Ty X [—h /2,
h/2] and €4 (§ = =4 k/2). Then the functions z' (§%, {) goveming the
position of points of the body in the deformed state are stationary points of the func~
tional [27]

I= ( Undodt — f (Pt (8% &) xy do — | Piaf (5%, B) do (2.3)
S

{A}= l%-h!2+f41 ——nj2 do =V aodE dE?
Here do is the area element on  Q,, the elastic energy per unit volume U is a
known function of the strain tensor components

284 = -Ti.mx:B — Qoapy 28az = xi,axé, 2855 = xi.éxg —1 (2.4)

and the comma before the subscript § denotes differentiation with respect to £. The
strain amplitude & = maxvy, (g,8°")"/= is assumed small (e << 1).

It is required to replace the problem formulated by an approximate "two-dimens-
ional™ problem in which functions of just E!, £2 enter, The usual two-dimens-
ional problem can be considered the result of passing to the limit as A — 0 inwhich

U and P; depend on k in a known manner, The change of variable § = A(,

| T]<C Y, makes the domain of definition of the solution identical for different .
After the change in parameter, k will enter the functional explicitly in terms of €x3
and 233. Let us start the exposition from this viewpoint, however, we shall laterturn
to a more "realistic" viewpoint according to which A is fixed and the expansion is
carried out over certain dimensionless small (but not infinitesimal) parameters,

The fact is that as k — 0 the bending strains also tend to zero if the strained
middle surface arrives at some limit position as  — 0. Because of the physical non-
linearity, the material can behave differently for € ~ 40~ or & ~ 4073, and the
formal passage to the limit % — 0 can lead out of the physically interesting domain,

Rejection of the infinite smallness of the parameters generally requires refinement
of the meaning of the symbols o, 0, ~, <€. This question is not discussed later, Let
us just note that the possibility of passing to the limit h - 0 is restored in the
physically linear case and all the concepts of asymptotic analysis acquire the usual
meaning,

3, First approximation in the physical linear
theory, Deformed middle surface, Letusintroduce the func-

tion . .
(&) =<2t (&% O
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where <-> is the integral with respect to & in the limits [—,, Y/,]. The surface
§2 given by the equations z' = r' (%) will be called the deformed middle surface,
Deformation of the middle surface is described by the tensors Agg = /5 (Gap — aoop),
Bag = bag — boup. Let us consider the elongation amplitudie €4 == maxg,
(AgpA®3)/z and the bending amplitude &5 = "/»h maxq, (BgaB%)': to be small
compared to unity,

Characteristic scales, We make achange in the desired functions

2 (E, D) = () + ket (89) L Ry (2, 0) .

where n' is the normalto Q. According to the definition of 7%, the functions
y' (&%, [) satisfy the constraints

G Er D=0 (3.2)
Formula (3, 1) sets up a mutually one-to-one correspondence between all the functions
&' (&%, L) and the pairs {r' (£%), y' (£, )} in whichthe y' are subject to the
conditions (3, 2).
LEt . s s
Ya= 10y (e’ =T4), y= niy;

A“ = maXVO} Ifa,ﬁ, A = maxVQ{ y?C}

Because of the Werthinger inequality [28] |y | <C Ag, Jy [ L A andif Ay =
A =0, thenalso yu =y = 0.
Let us examine a certain point on the surface 2. For sufficiently small num-
bers 4, I, at this point the following inequalities are valid

€ £
lAaﬁ,?‘<"j'A-’ %‘hiBaﬁ,v’Q’z‘{ (3.3
?7 Aa ¥
maxtlya,ﬁig‘“lg'
We call the best constants /;, J, in the inequalities (3,3) the characteristic scales of
variation of the strain along the axes E!, 2, Thescales l;, I, depend on the
points of the surface,
The nature of the state of stress is essentially related to the relative magnitude of
h, 1, and l,. Letus divide the shell into three parts V,, V, and V, where
the ratio of A to one scale is much less than one in V, , and is on the order of or
greater than one to the other scale; b/ ;<€ 1 h/ L<<€1in V,, andh/ L1,
h/l>1in V,., Thedomains V,, V,, and V, are cylinders in the vari-
ables E%, {. Their intersection with €, is denoted by Q,, Q,, and €;. The
subscripts on domains V; and V, are selected in conformity with the fact that it is
possible to pass from the three-dimensional problem to approximately the one-dimen-
sional problem in V¥, (to a rod), and to the two-dimensional problem in V. The
problem remains three-dimensionalin Vg . The domains V,, V, and V, dep-
end on A,
Let us assume that the shell contains no domain ¥V, but consists of the domains
V, and V,, where the domain V; abuts the edge of the shell and is given by the
equation ¢ — b <L B e, b =b (8% h),b—>0 as h—0, whileh/ j~ 1

A
* maniy,m!QT
&%
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and h/ L, <€1 in V,,

The values of X and 1, and therefore, the relative arrangement of the dom-
ains Vi, V, and V; are determined by the extemal load, the kinematic boundary
conditions, and the geometry of the surface  Q,. The assumptions made implicitly
introduce a number of constraints, For instance, the assumption of no domain v,
eliminates external forces, whose characteristic scale of variation is on the order of
the shell thickness, and also shells for which R, ~ %.The description of the constraints
occurring are explicitly related closely to the construction of error estimates for the
approximate theories and is a separate problem,

Let ! denote a quantity equal to min{l, &} in @ and 1, in Q,. Sucha
nature of the change in the external load can be selected in the passage to the limit

k — 0 that the parameter k., = k/1 will be a function of the geometric parameter
he = h/ Ry In a number of papers, the dependence k,, = (k)™ is taken essenti-
ally, where 0 <08 <1 is the index of variability, The postulation of such a depend-

ence is not related to the crux of the matter; the passage from the three-dimensional
to the two-dimensional theory is possible even for other dependences, for instance,
Bew = (k) PIn&,, and in those cases when the parameter h,, isnot related to
h* at all, it is only important that x,, <€ 1. The parametersh,and h,are later con-
sidered independent, Conformity with the terminology ordinarily used can be achieved
if the equality &,, = (hy)'™0, is considered the definition of the index of variability
8 in the parameters h, and h,,.

Classification of the approximations, The presence of
three small parameters €, h,, and h,, generates a large diverity of asymptotics,
We diminish the number of possible cases by using the following reasoning, For metals

& ~ 1075-—~1073 , and there is no sense to keeping terms on the order of £ in com-
parison with unity, For thin shells (k, <Z 1072) the components on the order of Py
should be discarded, For shells of medium thickness (7, ~ 107! = 2-1071) taking
account of corrections on the order of h, may be of interest, Numerical computa-
tions show that two-dimensional theories sometimes work satisfactorily down to A,
~ 1 2, and it is expedient to construct a two-dimensional theory in which corrections
on the order of h, and h,,? are taken into account,

In this connection, the following approximate theories are later examined;

The classical theory

(17+ P + i T Paa® 4 hyghy -+ B2+ 6 4 L. )
The fundamental refined theory

(1 4 Pryg =+ [hg Fhos? + byl + B2+ 8+ ... )
The refined theory taking account of the geometric correction

(1 + hyy + h*\"l" [Pya® + Pyshy + B2+ 2+ .0 L])
The theory taking account of transverse shear

(1 + hywe + By + hys® - hyghy + R+ e+ ... ])

The orders of the terms conserved and discarded in comparison with one are indicat-
ed in the parentheses, while the terms are taken. in the square brackets,
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In separate parts of the shell / can be considerably less than /2, and we have
By ~ hyy® for I~ (RRy)"7:. Hence, the theory taking account of the geometric
correction can pretend to refine the classical theory only in those parts of a  shell
where [ 2> (hRy)".

Internal problem and boundary layer problem,Let
us separate the functional 7 into the sum of two functionals;

Iy = | Undod; — | Pt (8%, t)do (3.4)
Vi Sn
I, = b ) Uxdod; — | (P (&%, L) xydo
Ve R
Let S, denote a cylindrical surface separating the domains 1/, and V,, and
T, itsintersection with Q,; S, — T, > [—1/,, /,]. Let the functions xi (£%,
¢) be assigned in some manner on S,

2 (8% 0) = 1y = ry A Al - by,
Then problems to seek the stationary points of the functionals /, and 7/, inthe
set of functions z' (£%, {) which satisfy the constraints (3. 5) are defined, We call
the first problem inner, and the second the boundary layer problem,

(3.9)

Certain estimates, We denote the number independent of 2 and the
state of stress by m . Let d be the diameter of Q, (the maximum distance between
points of the curve T'y), T, and I'f, are objects of connectedness on €, and

2. We shall later understand I to be the lesser of the numbers d and the quantity
{ considered above, The following estimates hold

|aoap | <<m, |l [<m, |Tofy|<m/d, [Thy|<m/l (3.6)

A
hQCaB = 1/,h® ((’aﬁ — c()onﬁ) = h2bn(aB[’>)x -+
O (eB® -+ hyeaep + hy’e4?)
Here cgp = a“"bmbvﬁ, symmetrization is denoted by the parentheses in the sub-

scripts:  fiopy = Yo (fap + fpo)-
Let Aq << 1, A < 1. Then it can be shown that

8.7

Ao <= me, A< me, €4 <_me, €< me (3.8)
[e S S IS AN

Inner problem, The condition of boundedness of the strain as A —

imposes definite constraints on the external forces, The second term in the functional

], should be of the same order of smallness as the energy, i,e.,pe*h | 2, | (| Q,!
is the area of €2, ), or of higher order, Hence P; — O (k) as h — (. Let ¢
tend to zero, Since the external surface forces P, are proportional to the strains, it
is possible to write P; = O (peh). This estimate should contain a dimensionless
small parameter and % should be replaced by f /] or h/ R,. Itisnaturalto
expect that the characteristic of the state of stress % / [ figures in the estimate of
the force, Thus, we take as fundamental assumption that

P; = 0 (uehy,) on Q.
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Let us proceed to an asymptotic analysis of the functional /, in the case of a
physically linear material
2U = (ggﬁaaﬁ -+ 333)2 + zugg'vg(?osaﬂavé +
2pesa® + 4ugo " Bustpn
Let us introduce the longitudinal and transverse elastic energies by means of the form-
ulas

(3.9

Uy = mingg U, UL =U — U,

Simple calculations yield

A
Uy = plo(gfeup)® 4 25780 eagers], o = Trom

UL = Yo (M -+ 20) (ess -+ 085 eap)® + 2085 euseps

Let us estimate the orders of y, and Y. To do this, it should be assumed that
the functions ri (E*) are fixed and the first approximation for Y, ¥ should be
found, The first approximation is sought from the condition of stationarity of the fun-
ctional I, in which all small terms in the asymptotic sense are discarded, We pro-
ceed as follows, We first take the following approximate expressions for the strain

€up = Aap — hBagl, 2843 = Yar + Ay, €33 = Yt (3.10)

The functions y, and y enteronlyin U,. In the first approximation it is possible
toset x = 1, g7 = ¢, Terms containing y,, y have the form

R{U dod;=h (T do (3.11)
Qg Ql

J =1 (M + 20)(y, ¢ + 045 — ohBIL)* +
1a3” Wa,t -+ k. a) (@ B))
The symbol (o — P) denotes the expression in the preceding parenthesis with the
subscript & replaced by . As yet the work of the external forces is discarded. The
functional (3. 11) " does not retain" the boundary conditions (3,5)., Hence, the deter-
mination of y, , ¥ reduces to minimizing J under the constraints (y,> = {y>
= 0. The minimum of J is zero and is achieved at the functions

Yo = Yy 0hAY 0 (B — Yip) — Ys 0h2Bl oL (L2 — Ya) (3.12)
y = —UAgQ -+ 1/2(5th (g2 — 1/12)

Therefore, ¥ ~ €4 -+ €8, Ya ~ Pyy (ea + €B). Now let us verify whether use of
approximate expressions for the strain and discarding the work of the external forces
would be allowable, We write the complete expression for the strains in the form(two
bars in the subscripts indicated covariant differentiation on Q, and the semicolon
indicates covariant differentiation on )

€up = Aap — hBogl + h*Copl® + A (Y1) — basy) — (3.13)

Ry 1 55+ RPeapyl 4 Y2k (Y, o + bara® ) (@ — 3) -
Y5h?a™ (Yu i — Bual) Yvip — bvpY)
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2603 = Yo,y -+ hy, o - Bbaza¥hyy, — hbgyat iy, s+
h {y.a bi».u“'l}“f/}») Y, = A bty (.’/;x o — -”’p,vx'/) Hvpn

€33 = Y ¢+ 1,»!2?}’, :2 |- 1/’2am’flu, tlv, ¢
It is seen from (3, 13) that all the discarded terms in the expressions for €xs and &,
yield small corrections to the terms entering into (3,10), The member h2C,5%2 can
be omitted in the expression for ey because of the estimate (3.7), The members
containing ¥ yield small terms compared to the terms in the functional J for the
energy. Among the terms containing y, the Ayp) has the lowest order of smali-
ness, Let us examine the cross-terms they generate in the energy (the quadratic term

h2ygyp) is small compared to the term Ya: in J according to the definition of
the characteristic scale (3.3)).

h<gy"gt® (Aup — hBugl) yy 6%y (3.14)
Let us note that for small %, we have according to (2. 2)
ge’ = agf + 28557 4- 0 (h?), g = ()l g = (3.15)

ay® + 287" 4 O (h2), bP 353‘“—1/2110 al

Because of the constraint {yu» == 0 we have {Aqgyys> = 0. The principal
cross term between Yo and Agg in(3.14) has the form A2 (a2VbP°4 aplvip &>
and therefore, is small compared to the cross term between Ye,; and Y& . The
principal cross term between Yo and By in(3.14) A {Bugyypl) has the same
order of smallness as the cross term between Yo r and ¥y« in J, Hence, for
the correct calculation of ¥y, it should be conserved,

The work of the forces Py (P == P;n') induces a contribution on the order of
gw?h % a0d isnegligible for the determination of ¥ in a first apprommatmn The
work of the forces P%y, (P*= P, rBa“‘B) is on the order of pe?hy, , and there-
fore, induces the same contribution as uy tla,z- It should hence be taken into acc~
ount, Conservation of the terms mentioned does not change the orders of Yu and ¥

and the formula for y in(3,12),

It follows from the estimates y ~ €4 -~ €p, Yo ~ (84 -} €B) Pyy and(3,13)
that | €ap | << m (84 + €B), leas | U m (84 4 8) hyy, | &35 | <X m (4 +
ep). Hence &< m (g4 -+ ep) and, according to (3. 8), the measures of small-
ness of the strain g4 -}- ep and € are asymptotically equivalent,

Classical theory. The transverse part of the elastic energy is zero in
a first approximation and the total energy agrees with the longitudinal energy cal-
culated by strains €up = Agg — hBggl. Retaining the principal terms in  Agg
and hBgg and the principal cross term, we obtain

® =hU)=h{U;>=F(A)+ Y,F (hB) + F (4, hB)
F(A) = ph[o (457 + AgpA™)
F (hB) = ph|o (hB%)? 4 h*Bog B
F (A, hB) = Yguh*}® [0 (A3Bys + ApsB%) — 24%Bas)
The tensors Anp and Bgp are kinematically independent; for given Agp the
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tensor Bag can have functional degrees of freedom, Additional degrees of freedom
can be sought (for fixed Agg) from the conditions for the extremum of a functional
with the energy density Y/,F (hB) + F (A, hB). The crossterm F (4, hB)
hence plays the part of extemnal effects for the additional degrees of treedom. However,
in the majority of linear problems occurring in applications, assigning Agp by virtue
of the support conditions on the edge defines the tensor B,z completely; by virtue
of the inequality F (4, hB) < mh, (F (4) + F (hB)) the cross energy is "subject”
to the tension and bending energies and can be discarded. We consequently arrive at
the formula @ = F (4) + Y,F (hB) .

Within the framework of the accuracy of the classical theory, the measures of
middle surface strain can be overdefined because of the addition of small terms, For
instance, the tensor B,g can be replaced by the tensor [6]

Pap = Bap — bysApp (3. 16)
This corresponds to adding components on the order of h,es4 to hB and changes only
the cross energy which is discarded in classical theory of shells. We shall later under-
stand the energy density in classical theory of shells to be the quantity

® = F (A) + Y,F (hp) (8.17)

The work of the external forces on the front surfaces reduces in a first approximation
to the work by z* = r* (E%) + hn' (E*) {. In an edge functional I, the energy

is on the order of pe? [Ty |5 (] T, | is the length of T'y) and is small compared to
the energy of the inner part of the shell which is on the order of pe? |Q,]|. Work of
the forces in the edge functional reduces in a first approximation to work in z' = r*
(2%) + hnt (E*) £ (this becomes clear after examination of the refined theories).
Moreover, the integral over €, in the expression for the energy of the inner part of
the shell can be replaced by an integral over £J; , this results in the addition of a
small component on the order of pe? | I'y |[b. Thus the functional of the shell energy
is given in a first approximation by the formula

Ir@®) = |@do—1L (3.18)
Qo

_ S ((Pyr + =W n) do 4- h S (P> T h(PEY n)ds
Qo Te
{Pi} = Pilt=sj, + Piltm—sppy [Pl = Pift=sfy — Pilt=—v,

Here @ is the function (3,17) and ds is a length element on T

4, Surface energy in refined theories Tocalculate the
terms in the energy density which are of order pe%h,, ey, NE2Hoyyit is neces-
sary to find the y, which are of order €hyy » 25 has been established, Determina-
tionof Yo 'is connected withretentionin energy terms of order W& h** . Terms of such
order enter into both the longitudinal and transverse energies. Inorder tosimplify
the calculations and not take account of terms in the longitudinal energy, wesubstitue in

place of(3.1) i _ (%) + het (8% T + k' (2%, ) (4.1
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The functions 7 and (p’ are considered independent desired functions, The
presence of three independent functions of &% in addition permits the imposition of
six constraints on the remainder 2°

G =0, G =0 (4.2)

The functions ' and ¢’ have the following meaning;  ri=(z* (&%, {)>, ¢t =
A2 x {2t (&%, ) C) Formula (4, 1) sets up a mutual one-to-one correspondence

between all functions z' (§%, {) and all triples {r', ¢, z'} in which the z* are

subject to the constraintes (4. 2) It follows from the preceding analysm that Qg =

raq), ~ thyy, © — 1= n'gp; — 1 ~ e. Later we consider r', ¢! fixed and

such that @y ~ ehy,, @ — 1 ~ ¢ and weseek 2z,

Higher order derivatives of the functions desired must be estimated when construct-
ing approximate theories possessing higher accuracy, In this connection, additional
inequalities for the subsequent derivatives should be introduced in the definition of
the characteristic scales, Within the framework of the substitution (4, 1) this reduces
to adding estimates of derivatives of the new degrees of freedom, We replace (3, 3) by
the inequalities

e &
[ Aap,v | < ""2“ h|Bap, | << —— (4.3)
ep) . {eqFepih
| o | < M, Jo—1]<eq+ en [(po,"ﬁl<_.._4._ﬁ__§m_

eyt A A
!‘P,a{‘g*‘é—y;—a"’ maxg | ze,y |-y maxp|zy| <5

(za—zrézi,zznizi,ﬁamaxva({zl,g]-Hzg,;l +lz,¢])

Since Z' = y' — rﬁ%‘a‘*ﬁ& — (p — 1)nit, A ~ e. Let us write the strain compon-

ents in terms of 1%, cp‘ P
eap = Ao — RBGL + Wg@ + hregs, gy -+ (4.9)

k2@, i, )5 + YehZ, o2,
2603 = Zu, ¢ 4+ Pu -+ h9Zi, o + Hoh (9:9Y) o T +
h' o, 1+ e oz, ¢
egs = 5, ¢+ Yo (@i0 — 1) -+ Yoz 2 ¢
(BB = — ria®i,p) — boag = Bas — Paypy + (@ — 1) bog =
Bug + O (e by + y))s CB ="/ (9} a4, 5 — Coup))
The estimates
|2t <mA + B, [91a— tia| <m(ea+ e8) (7 + RyY)
P2 (@) a— 10) i, | << 7 (B 4 Bray)? €2

follow from (4.3). These estimates show that the last two members in the formula for i 8“3

can be replaced by A% n(,az, ;e tothe accuracy of terms of the order of (B, +
hyx)® €% The terms hrhz;, B and h®n(,qzi,p ¢ yield a contribution on the order of

(Hoea + hyep)(hy + hyy) A to the longitudinal energy because of the constraints
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(4.2). Since there are cross terms between 2z and r', ¢! on the order of k**eK
in the transverse energy, the cross terms in the longitudinal energy can be discarded,
Therefore, in seeking the z' in a first approximation, their contribution to just the

transverse energy must be taken into account, Simplifications because of discarding
in the formula for

€as h(Pl; aZi, LC(“@(P? i, th | <M (hy + Ry (84 + 28) A -+ mh*.&) and hz,ioaz, t X
(| hz azi, o | < m (R + By B2)
and the substitution
¢'gi — 1 on 2(p — 1), ¢'ziq on 24
(o' —1—2(@—1) [<m(ea + 88)% | 92i,0 — N0l <
I (ea + €8)* + mhyyed)

are also possible in the transverse energy, The approximate expressions goag = @gop,

gﬁ”s = aﬁ‘ﬁ can be used for the metric tensor components since the values of 7
are sought in a first approximation, Taking account of the work of the external forces
on z', we obtain the following functional to determine z'

B [ (U £(z08) + T 1 (2) do (4.5)
2,
1 /s
I o D)= 5§ 00 G, ¢+ Qu o B0, iz, 0) (0> B L —
._1/,
{P%240}
{ /2
Ti@ = § 04200 +0— 14042 — chBRPd; — (P2)
—1/z
The functional (4, 5) " does not maintain" the kinematic boundary conditions on Sy,
hence, the evaluation of 2%« and z reduces to minimization of the sum. J o+ T
with respect to Zu and z at each point of the surface €, which are considered
as arbitrary functions of { dependent on E% as on the parameters and satisfying the
constraints {2z = {2q0) = (&) == {(zL> = 0. Tofind z, it is necessary to
know z ima first approximation, The cross terms between 2z, and z in the funct-
ional J, are small compared to the cross terms between z and Agg, hBgg in
J . Hence, the first approximation for z is determined from the problem of the
minimem J,;. We obtain
2 = Y,0hBY (L2 — Y1) — ¥/5%E (L2 — 3/9) + (4. 6)
Yy (b 2071/ 5 LPT T (82 — ¥p0) + {P} (8 — V12))

infJ, = —Y4,0 {P} hBs + */1p (A + 20) §* + V1» [P1T (4.7
Here § = ¢ — 1 -+ 0dg. The quadratic terms in the external force components
are omitted in (4,7) since, as is easily verified, their variation yields a contribution
of order shi,,. to the equation as compared with one (in linear theory these terms
are nof variated and play the part of additive constants in the energy functional),
Let us assume that P == O (eh,) (this will be confirmed later), Then accord-
ing to (4, 6), in a first approximation
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z = Y,0hBg (L* — Y12)
Substituting this expression in  J_ (z,, z) and minimizing with respect to 2,
we find
20 = —oh,0 (8 — Vip) + Vsoh2BR oL (£ — ¥3) — (4%
Y5Bal (88 — V) -+ Vop Ny [Pa] T (L2 — Vo) +
{P@} (Cg b 1/’]2))a Ty = Qp — l/nghg.Bg,a
il J = 270, A+ Vig [P o + Yy {P) b +
Y1200 (P ?Bay @ = b (UL = ¥ 1aphi§aG®
Quadratic terms in the external forces are discarded in (4. 8).

To construct the energy functional of the inner part of the shell there remains to
evaluate the surface density of the longitudinal energy Dy = h{Uyny. Here
the approximate expression fap = Aap — hBLY L + n2CH 2 can be used for the
strain components eqg (let us note that CGR = Cop + O (hy (B -+ Tiys) €).

We introduce the nonsymmetric tensor efy = gi’e,s, where g7 are determined by
(3.15). The energy density can be given the form

Ujn = p lo (e70)* + erpefal
Re-expanding e in the first Legendre polynomials, we obtain by using (3, 15)
el = (AF — sk B + Yuah*CE) —
B (B — 267 Ayg) E 4 B2 Y (8 =) -
We omit the superscript in the g3 by using the metric @p . Then

Uypn = plo(ag Bfimﬁ)z -+ ag?agvgmfsﬁwa} (£.9)
The antisymmetric part of €145 yields a contribution on the order of 4,22 to

Uyx and cannot be taken into account, Hence, to evaluate @ it is necessary
to substitute the tensor €yp) = Ai1ap — "Bl in place of €1ap in (4, 9), where

Alaﬁ == Aaﬁ - 1/3}3261(;.‘8{(5?7% + 1?’12}52(305{59 Blaﬁ == Bg%) — Zbl(éAﬁ)L

We obtain relationship for @ which agrees with the classical in form; @y =

F (4,) + Y/ F (hB,). The difference is in the expressions for the deformation and
the bending measures, We find ¢. The derivatives of @ enter the functional line-~
arly, hence, by varying with respect to @, we obtain a linear algebraic equation for

% (h + 2u)(@ — 1 4 6dg) + Vi [P] — Yy, {P}a +
k—l baﬁaq)“ / aqu,ﬁ = O
It is hence seen that, as had been assumed above, ¢ = 1 — cAj in a first approx-

imation, The error of this formula is O (e (g + hyy)). As a measure of the bend-
ing, we take the tensor

— A
Pap = Bag — Qi) = byadpy
It agrees with the tensor (3, 16) if the transverse sheer Q¢ is not taken into account,
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The tensors Ajap and Bigp interms of Agg, Pap with the expression for @
taken into account, have the form (fq = boug — Holaes 1S the deviator of the
second quadratic form of Q). )

Arap = Aop — V1ch®G0n  Biap = Pup — biaApin — Oboap A3
The expression for the energy still remains awkward, Especially "unacceptable"
is the gradlent Bg, which enters into the transverse shear energy in terms of Qg ==
1/5.3th B« Siice ¢, are independent functions, it is natural to get rid of the
grachent BB by going over to new desired functions . Here it is also necessary
to make the substituion r; > F; = r; — /eoothﬁn, in order that the formula for
Pap  does not change (this formula was used in [29] for the linear theory of plates),
Let vyqp denote the tensor Ay,p constructed with respect to Fit Vap = Yo
(Flu Fip — Goop), and #; the vector determined from the relationships 2,7, = 0,
fi;i = 1. Then

Asap = Yap — Y12h?bppi — YeoThboappl (4.10)
. A g - s
Biag = pap — bV — Oboag¥hs Pap = TiiF ap— Doas—Pie; ) — DoV
After substituting (4,10) into @ and discarding terms on the order of h% compar-

ed with the principal terms, the surface elastic energy density @ = A (Ux> =
R U %> 4 R U %> is wiitten in the form

D = F () + YyF (hp) + F (y, hp) + 3/ ophiei™ (4.1)
P (v, hp) = —Y4uh® (Yapb*0™® -+ ov}boapp™ + 5078 boappr. +

o (%50 — 1) yoH ,08)

Hete F (y) and Y1 F (hp) is the tension and bending energies according to class-
ical theory, F (y, hp) is the cross energy, and the last term in (4, 11) is the shear
energy,

The work of the external forces is given by

éS(({Pi}—hHO D+ Pk — 0) do (4.12)
2

—_—— el A

_.—__-._-.._.

Formulas (4, 11) and (4, 12) determine the energy functional of the inner part of the
shell,

5, Boundary layer problem, Theboundary layer problem isa
problem about the deformation of a closed elastic rod on a part of whose side surface
(S4) the positions xi = xi (£*, [) are given for the particles, and surface forces
on another part (S,) , while the side surfaces § = =4 !/, are load-free.  We
consider the positiofl of the particles on S, to be matched with the internal expans-
ion, This means that 2% = ri + k@il + hzi (the asterisks denote values of the
quantities on S*), and the fust approximation for z‘ is found from (4, 6),(4.8).
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since U ~ pe?, the volume integral in [ is on the order of pe? |I'y| A2

(for b ~ k). Itsinfluence is felt in the boundary conditions in terms on the order of

hyy as compared with one, Hence, [, must be found on the basis of the refined
theory in a first approximation, and with corrections on the order of 7, compared to
unity in the theory taking shear into account, Still another characteristic parameter
occurs in the boundary layer problem, the surface curvature /g,y of the contour I,
or “T'o): kny = Toidvy / ds (7 is the tangent vectorto T, ¥, = T X &,
and s is the arclength on T, which increases if the surface {2, remains on the left
during traversal to I'y ) ., We further consider that Epmy ~ I and Qoyy ==
Qops = 1,a0; = Oon Ty .

Energy of the free edge, Fistlet P, =0 on S, To the
accuracy of terms on the order of A, and h,, , the metric tensor components in
the coefficients of the quadratic form U can be replaced by the Kronecker symbols,
Let us extract the longitudinal energy, the transverse energy, and the shear energy in

U (the Greek subscripts in Sect, 5 run through the values 1,3, £ is the Young's
modulus, and v is the Poisson's ratio )

U=Uj+ U, +Us, Uy=mingge,U = YoFes? (5.1)

U, = mingg, (U — Uy) = 20 (o0 + ea5?)
Ul=U—Uy — U, = plley + vep) +
(B33 -F vege)® -+ 28152 ++ Yok (84 + 235 -+ 2vey)®
It is convenient to introduce a new comoving coordinate system 1. §, & in
the boundary layer problem, which would be given by the formulas
2t = b (s) + Bt () m + b (T
in the initial state, where z' = ro (s) is the equation of T, in the initial state,
The rod cross section is curvilinear in the m, &’ coordinates (Fig, 1).
The transition matrix from the coordinates (! — b)/ kh, { to the coordinates
M, &' differs from one by a quantity on the order of h,, hence the energy in the
5‘; A new coordinates has the form (5, 1) with the accur~
4 acy taken, The coordinates { and {’ coincide for
1 = 0. The prime on the {’ is further omitted
y since the coordinate { is not used in the boundary

v ]
layer,
5 zl‘f Let us make a change in the required functions

Fig.1
zi =1t (s) + hvi () -+ hnt ()T + hyi (n, E, 8)

The vectors v' and n' are located in the deformed state relative to the image of
T, exactlyas vo and ng' relativeto Iy. Substituting(5.2) into the
expression for the strain tensor components yields
&1 = Y11 -+ 1/2y]11 Yi|1 2813 = ¥y 13 -+ Ys3|1

€33 = Ys(s + Ynyia¥i1s

(5.2)

(5.3)
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PUYs, < ah? (1) i, — i, s, ) B -
ah® (V) Vi, s — Vo, Vai, ) M° + h? (7l gvi, s — 1§, Vi, ) MG
1/2}2’29? sHi, s + hgnf sYi, <§ "(" hz”? sHi, sh
The bar before the subscripts 1 and 3 here denotes the derivative with respect to
and {, and the comma before the s, the derivative with respect to s.
Yo=YV Yo= T, Ys=ny T=dry/ds
. , N :
Wy = nivf s ™ b{;m, A;kg = lfz (T;Tt — 1), B;; = nir', s ™ Roily, s
The quantities ko, and hBj, differ by terms on the order of h,e4 from the
values of hB,, and hB,, on T',. Letus keep the terms underlined by the solid
line in (5,8), Then the boundary layer problem dissociates into two independent prob-

lems, the plane problem of the minimum of a functional («-» is the integral with
respect to v, ¢ over the rod cross section)

QU LY = 1)1 + VAR — VRBELR 4 (Yaja -+ VAR — vRBRLE 4+ (%)
Yo (a1 + ¥a11)?) 3 oA (Yaga -+ Yaps + 2vA} — 2VhB2*2§)2>>

in a set of functions y,, y; satisfying the conditions

v1 =0, ys = —0A™ -+ Y,0hB*G (12 — Vy5)
for m = 0, and the antiplane problem of the minimum of the functional
U = Yol Wi — Ry D) + (yz15 + BoymP®) (5.5)

in a set of functions ¥, which vanish for n = 0.

It is seen from (5,4) and (5,5) that ¥y, y, and y, will be on the order of €.
Hence, all the terms discarded in (5, 3) are less than the rest (the third member in the
formula for &, differs slightly from k& 84,/ 0! and, therefore, is of the order
of hyeta).

The integral over the cross-section €Y can be replaced by an integral over
the rectangle 0 < n <  by="5b/h, | {L | <<,  Thisinduces an error on the
order of h,.

Plane problem, Letuspass from Y1, ¥s tothe new desired functions
0 % * *
yr= —vAnn + vhBym{ + 2z,

(5.6)
Yy = —VARL 4 YVyvhBY (82 — Yy} — 1/,vhBEn®E + 2z,

Then the functional of the plane problem takes the form
ULY = «p Lz + Vs (245 + 251) + 2za1®] + Yok {2y + 259)%)
For m == 0 the functions %y, zg satisfy the conditions
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2, =0, 23 = (—0A"G + vAR)L + Yy b (0B*¢ — vBY)

(8 — Vi)
Since to the accuracy assumed
*
A = Yadpi Jn=n = — vAZ + <2111 =0
*
By = — Ysin> In=0 = - VB;; ~ {Z3111> 'TI=0
and v — 0 = — v0 ,the boundary condition for z; is homogeneous

2y = —0{zypL — Yyho Gy, M =10
Hence, inf{lU/,) — () andisreached for 2z, = z, = 0

Antiplane problem, The minimal valueof (U_ ) is proportional
to by (ho,)?. We denote the proportionality factor by D

infy U,y = Y1y Db h20os
Calculations yield

oc

- ho 96 tanh(2s — 1)y ab/ &
R D e

For % < b we can put approximately tanh(2s — 1)nb /2 =1and D = 2p
1 — 0,315k / b).

The edge energy is comprised of the longitudinal energy (U ;) and the shear
energy (U Y. Ina first approximation we have

inf I :S Wds, ¥ [ B (AR 4 4 BE) + B2 0] .7
)

2 6
The next approximation for the energy of a

free edge, The taking account of corrections of the order h,, is associated
with keeping terms emphasized by primes and a dot in (5.3). If kk(,) ~ hﬂu then
the terms stressed by the dot can be omitted, It is easy to verify that inf ¢U L>> ~
ne’hy, and does not yield a contribution tothe edge energy. Toevaluate inf (U, )
it is necessary to substitute the values of ¥, and Yy, found in a first approximation
in the members of the expressions for &,; and &,, stressed by primes, The edge
energy is easily found, however the answer is too awkward to set down here,

Functional of the energy of a loaded edge, The
longitudinal components of the stress tensor p* in the internal part of the shell are
on the order of pe, while the transverse tensor p®® is on the order of ek,
In this connection, the external forces on the edge are naturally subjected to the

condition
Pivi = O (pe), Pt =0 (pe), Pint = 0 (uehyy)

However, it turns out that the self-equilibrated part of the load yields a contribu-
tion to the edge energy for such "large" extemal forces, In fact, (P;T'yy> ~ use?,
i.e,, is on the order of the shear energy <<U Y. The work P;tt on oy, will
therefore enter into the functional of the antiplane problem, By solving the antiplane
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problem, it can be seen that the self-equilibrated part of the load, equal to P;Ti —
Pty — L (P;Tily / {L*¥; performs wotk on ho, and, hence, is essential for
the calculation of corrections of order A,, to the solution, Therefore, if only the
total force and moment on the edge are known, then the maximum allowable accur-
acy is given by classical shell theory and the construction of refined theories is gener-
ally meaningless, The situation is changed if the external forces satisfy an additional
constraint: (the part of  P;7¢ oddin {) = O (pnehyy). The partof Pl even
in { can be discarded in ﬁle antiplane problem since it does not work on  hw, and
yields only quadratic components in the external forces. The quantity { (the part of
P;vioddin { )-y,) isoftheorderof ue®h,, andnegligible comparedto (U ). Hence,
the taking account of the external forces does not change the solution of the antiplane
problem, Work of the external forces on ¥ can be discarded since (P;n'y;>
~ We?h,,. There remains the work on  y,: (P;v'y,>. It is of the order of, pe?
and will enter the functional of the plane problem.After the substitution of (5. 6), it
will become

{w [21112 + Y2 (zys + za1)* + Za|32] + YoM (le1 - Zs|3) > —

(Pv'2r) b, — <Piv (—vAZm + vEBEND)) ln=s

The extremals depend on P v Dlscardmg the terms dependent on P;vi, we ob-
tain b, ((P;vi> Azz — (P VDR Bm) for the minimum value of the functional
of the plane problem, Consequently, the edge functional is given by the formula

n_fwm_h
Ll—hS (P>T 4 bCPYV + h(PLY R —

vb ((Piv'y Ay — (Pv'T) hBR))ds

(¥ is the function in (5,7))

Construction of the edge functional with corrections on the order of 44 taken
into account, and therefore, of a theory taking account of transverse shear is imposs-~
ible if the self-equilibrated part of the load is unknown. Corrections of such an order
are caused, for instance, by the self-equilibrated part of the force P;v¢ in the
antiplane problem, In this connection, a theory with shear taken into account is not
universal and its application is justified only for special classes of problems (closed
shells, shells with a free edge).

The above exposition permits the expectation that the following analog of the
Saint Venant principle in shell statics is valid: in order for a load which is self-equili-
brated in each transverse fiber of the edge to cause an internal state of stress represent-
ing 0 (uehyy), it is necessary and sufficient that  P;vt = O (pe), P;n’ =

O (pnehy,) and (the partof Py oddin §) = o (pe).

The necessity of the latter condition is verified by the exact solution ofthe problem
on the strain of a semi-infinite plate which is self-equilibrated by a load at the edge,
which has been constructed in [30].
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6, Two-dimensional refined theories of physic-
ally linear shells, Letussummarize the results, The function of a
two-dimensional shell theory is given by the formula

I={®do+t | ¥ds—L, L=IL+L (6.1)
2 Ty

Varying (6.1), within the framework of the accuracy of theories taking shear into
account, we obtain a system of equations

1™ o — qBbog 4- {P™} = Yoh [PP] (b + 2H 487) (6.2)
0% o + t*bap -+ {P} + Yok [P%), o = RH,[P] (6.3)
1% = nob 1), (byamP® — bbmo®), ¢ 4-meb .5 =0 (6.4)
(D +8) D -+ 8)
ap . of . LA TV 6.5
" Frora Foug (6.5)

The classical terms are written inthe leftsidesof (6.2) and (6, 3), and corrections of
order h, in the right sides., The system (6.2)—(6.5) is closed in the first two refin-
ed theories. Two more equations for the function @, are added to (6.2)—(6.5) in
theories taking shear into account
o (D - 8)
09y,

In the classical and the funadmental refined theories @ = F (y) + Y12 F

(hp) (if the crossenergy is inessential), © = (. Hence

g = o Wk — R 1PY] (6.6)

n® — 2uh (oyrag’ + voB),  mo = Yguh? (ophas® + poB) (6.7
In the theory taking account of the geometric correction ® = F (y) - V12 F
(hp) + F (v, hp), where F (y, hp) is given by (4.11), and small terms stressed by
a dot should be discarded in the expression (4,12) for © ., Therefore

o o i Yaph? 1O 4 0 (s + (oo — 1) Hopl) o5 (49
3/5op%b8°ﬂ1 + 1,0k [P) a2
mB = mg® — Yeuh® [PMeb) 4 0 (3/gbh Py + (850 — 1) Hoplh) a2

OV;‘“bo ] — Y10 oh® {P} a%

Here n®®, m® are tensors in (6.7).

In the theory taking account of shear @ and @ are given by (4.11) and (4. 12).
According to (6 9)
nod = n + Yy, oh? (P4}, al®, mod = m%P — Y1000R3[PH]; |, o3P
where n% and m® are the tensors (6. 8).
To write the boundary conditions we introduce the curvature of the contour TI',
by the relationships [16]
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v} . : . .
3 % 3

45 — k('r)nu‘ %= = k(v)no - k(n)\’o

a’ni

ds kmvo —— k(\)‘Co

Varying (6, 1) results in the following boundary conditions for the first two refined the-
ories

1%Bvevy — B (P’ — kigyey = hb—-g— (P> — kT | — kpykoyM —  (6.9)
d .
(kMg + kM) — kexy ( + kM )
a7

fas\?g'fa —h (p{li > + k\\,)mw == kbk(n) <P'z’t > + ds u +

dM
e (k(v}ZV[ )+ kwm ( + kM ) — ki) (kM + kM )
e m“”: {5'\?@ — "g—;‘ Myg — k <P1n“> T — kbk(-g) (Pka> e

d [ dM d
a5+ kmM*) + B (P y |+
ke (BayM 4= koM ) | ++ koo (T + kM)

mvgvg + b2 (PLy = kb (P> + - M, — koM

Here
Mye = moBvytg, T = hbEAs — vhb(P v}y

M =1y, hW3bEBj, - vh2h (P V'L, M, = Ysh*bDo,
*

The classical terms are written in the left sides of (6, 9) and the corrections in the right
sides, The underlined terms and the terms behind the vertical bars can be discarded
within the framework of the accuracy of the fundamental refined theory. Let us note
that self~equilibration of the system of equations is lost here, Terms written after the
double vertical bars are negligibly small in the theory taking account of geometric
corrections.

The terms containing factors of the quantities b and %, have no analogs in
classical theory, They are related to the fact that the boundary conditions are not
posed at the points of extemal force application but at the site of a merger of the
shell and boundary layer solutions, Additional moments and transverse forces hence
occur,

The accuracy with which the functional I, is calculated does not permit writing
boundary conditions in the theory taking account of shear. The relationships obtained
for this theory can be used for closed shells,

7. Physically nonlinear theory, Wereplace the required
functions (3.1), The y, will be calculated exactly as in the physically linear theory
if the stress-strain relations allow of linearization for strains of the order of el .

Then for Ya. asbefore, we obtain Yo ~€Rys. Omitting further details,we formulate the result,

Let U (&%, T, h; €qp; Eas; 833) be a smooth function of all its arguments except

{ (plecewise smoothness in { is allowed), strictly convex in the strain tensor com-
ponents and varying slightly in = at ranges on the order of % (the corresponding
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scale ly satisfies the condition Iy >> h). These conditions are even satisfied in
the limit as A = 0. Let us construct the longitudinal energy
Uy (&, & gqp) = min U (&%, {, 0; €ah Eazs €33)
€313
Let us calculate the function

D (4, p) = Uy (8%, 5 Ag — hpapl)> (1.1)

The energy functional is given by (3.18) in a first approximation, where @ should
be understood to be the function (7.1) and pqg the tensor (3, 16)

8 On short-wave extrapolation, Construction of a two-dim-
ensional theory of shells by asymptotic method consists of two logical steps; 1) the
asymptotic analysis of the three-dimensional theory and the derivation of a two-dim-
ensional theory of shells in the long wave region, and 2) extrapolation of the results
to short waves, For brevity, the terminology used in dynamics is applied here and
the slowly varying state of stress (k/!<€1) is called long-wave while the rapidly
varying state of stress is short-wave.

The distinct asymptotic approaches in the first stage (analysis of the equations or
energies) should result in identical results, In parficular, the fundamental refined
theory constructed above should agree with the refined theory proposed by Gol'denveizer
[3]. Indeed, as Koiter and Heijden [16] showed, the Gol'denveizer theory allows an
energy formulation with energies £ of the form

h3b ( D

E:S(de—S‘F’dy, ¥ =g (1= ) ox? (8.1)

2 T

According to the fundamental refined theory, the energy has the form

E=5‘ Ddo f‘{fdy (8.2)
2, Fx

It is seen from the formula (5.7) for ¥ that (8, 1) and (8, 2) agree within the frame-
work of the accuracy under consideration,

The second step (extrapolation to short-waves is related to the desire to  pose
mathematically correct problems and, moreover, to apply the theory for "not very
long" and “"short" waves, Letus examine the correctness question,

The nature of boundary value problems which are correct for this system of equat-
ions is closely related to the type of system. The type of system is determined by its
behavior at short waves, Hence, it is impossible to speak about the correctness and
type of system of equations which would be deduced inits meaning in the longwave
region without preliminary extrapolation to short-waves.

We will call the extrapolation trivial if it consists simply of examining the con-
structed system of equations in which all the small terms, in the approximation under
consideration, are discarded for both the long-wave and the shortwave states of stress.
We will understand the extrapolation associated with the addition of a number of terms
in the equations, which are negligible in the long~wave, but essential in the short-
wave regions, as nontrivial,

It is clear that different nontrivial extrapolations are possible for the same system
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of equations. This should not cause any perplexity since the short -wave states of stress
do not allow of two-dimensional description and must be considered only in qualitative
correspondence and, perhaps, a satisfactory description of the integral characteristics.
The success of any nontrivial extrapolation from the viewpoint of the correctness of
describing the state of stress is clarified in the solution of test problems,

In connection with the exposition, let us note that the question that is repeatedly
evoked in the literature about whether the refined equations of shell dynamics should
be equations of hyperbolic type is essentially a question about how to realize extra-
polation of the equations derived for long-waves to short-waves, Both hyperbolic and
non-hyperbolic exirapolation are allowable, however, as numerous computations [31]
show, hyperbolic extrapolations describe the state of stress best on the whole,

The question of extrapolation as an independent question did not occur in the deriva-
tion of the classical theory of shells since the natural boundary value problems were
correct after trivial extrapolation,

Trivial extrapolation of the refined theory of Gol'denveizer generates ambiguity of
the solution, and even no solution for certain loads.

Let us explain this by the following example, Let us consider bending of a plate
occupying the half-plane =z, 0. The edge z, = ¢ is load-free, The classical
boundary conditions have the form

m?g‘“ -+ mm'z ==, mil = @ {8.3)

where m® is the bending moments tensor, The refined boundary conditions [3, 16]
contain a correction in the second equality in (8,3) (B is a constant)

mit 4 Bhmi?, = (8.4)

It is assumed in (8.4) that the motion along the =z?, axis keeps the plate on the left,
The refined boundary conditions can be used by two methods; 1) to solve the
problem with the boundary conditions (8. 3), evaluate  m™, and find the correction
to the solution, the plate bending by the external moment (Bhm!?) ,; 2) to solve the
problem after a "trivial extrapolation®, i,e., directly with the refined boundary con-

ditions,

Let us examine the second method, For simplicity weput A =0,2u =1 s0
that m't = 5y, m*® = w5, and m?2 = u9.. Let there be no external forces, The
deflection = is the solution of the biharmonic equation A% u = 0, We take a bi-~
harmonic function of the form # = (a; -+ agz;) € sin kz,. Substitution in the refined
boundary conditions yields

kay — a3 =10 (1 — Bhk) kay -+ (2 — Bhk) a, = 0 (8.5)

The determinant of the system of linear equations (8, 5) vanishes for k% = 3/ (2Bh).
Hence, there are nonzero solutions for zero external forces, Naturally these solutions
possess high variability (I ~ k) and emerge beyond the framework of those states of
stress for which the two-dimensional theory was constructed,

If external effects P sin (3z,7 (2Bh)) and M sin (32, / (2Bh)) are added to the
right sides in (8, 3) and (8.4), then the constants P and M can always be chosen
such that the solution would not exist,

The question of whether the circumstance noted can affect the stability of a
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numerical computation requires additional investigation, (In prnciple, the formula-
tion of a problem with the boundary conditions (8, 3) and (8, 4) and additional rejection
of solutions with high variability is apparently possibie),

The linearized variant of the fundamental refined theory elucidated above can be
considered as one of the possible methods of nontrivial extrapolation of the refined
theory of Gol'denveizer to short waves. The uniqueness of the solution of problems in
the linearized fundamental refined theory follows from the strict convexity of the
energy, and the existence of the solution can be proved by standard calculus of
variations methods,

The author is grateful to Le Khan' Xhau for verifying all the formulas and hence
correcting a number of errors.
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